Genome-wide estimates of coancestry and inbreeding depression in an endangered strain of Iberian pigs

María Saura

Departamento de Mejora Genética Animal, INIA (Spain)

v Tecnología Agraria v Alimentaria

Background

- Aims of a conservation program -
- Maintain genetic variation
 Control the increase in inbreeding [avoid inbreeding depression]
- Maintain genetic variation \rightarrow important parameter: coancestry [f]
- Avoid inbreeding depression \rightarrow important parameter: inbreeding [F]
- Traditionally f and F computed from pedigree information
- High throughput genotyping methods
 - Overcome limitations of classical markers
 - Obtain more detailed information (genomic regions)

Objectives

- Evaluate the use of dense SNP panels for:
 - **1.** Estimating coancestry \rightarrow use in management
 - 2. Detecting genomic regions involved in inbreeding depression

In a highly inbred strain of Iberian pigs

Guadyerbas strain

- Material for this study
- One of the most ancient strains of Iberian pigs
- Isolated since 1944 in a closed herd
- Now in serious danger of extinction
- Complete and accurate pedigree since foundation of herd [25 generations - 1178 records]
- Genotypes for 219 individuals → Porcine 60K SNP Beadchip

Coancestry predictions

Inbreeding depression analysis

- Inbreeding depression → Reduced performance as a result of inbreeding: well known, particularly for fitness-related traits
- Traits analyzed
 - TNB: total number of piglets born
 - NBA: number of piglets born alive
- Mixed animal model → genealogical and molecular analyses

Inbreeding depression: Genealogical analysis

- Genealogical inbreeding coefficients F_G were obtained using all pedigree information since the foundation of the herd
- 832 sows with data
- Average **F**_G: 0.19 [Range: 0 0.5]

Significant inbreeding depression in both TNB and NBA: -0.2 piglets per 10% increase in F

Can we gain insight into regions causing depression using the information contained in the 60K chip?

Inbreeding depression: Molecular analysis

- Inbreeding coefficients used:
 - F_{snp}: defined as the genomic marker-by-marker inbreeding, i.e. the proportion of homozygous genotypes
 - **F**_{roh}: defined as the proportion of the genome in Runs Of Homozygosity
 - Long segments of homozygous SNPs (> 500 Kb, > 30 SNPs)
 - Gives a more accurate measure of autozygosity (IBD genomic segments) → autozygous genotypes are not evenly distributed by the genome but distributed in runs

• Analyses performed:

- 1. Average coefficients over the whole genome
- 2. Average coefficients for each chromosome
- 3. Average coefficients for specific regions within chromosomes

Results

• F_{snp} and F_{roh} for 109 genotyped sows

Analysis 1 [whole genome]

→ Not significant effect

Analysis 2 [chromosome]

→ Significant effect on chromosome 13

Analysis 3 [region]

→ Significant effect on chromosome 13 region 27.6 - 53.9 Mb

r(F_{snp}, F_{roh}) > 0.97

Inbreeding depression: Molecular analysis

Analysis 3: specific regions SSC13

Significant effect in region 27.6 – 53.9 Mb

Comparing with previous QTL studies

- Few QTL studies on genomic analysis of reproductive traits in pigs
- First study genome-wide scan for prolificacy traits

Iberian x Meishan F₂ intercross

QTL region on SSC13 \rightarrow Affecting both TNB and NBA Overlaps with the inbreeding depression region detected

Comparing with previous QTL studies

Positions markers Sscrofa10.2

s0076- NA *ITIH3*-38.10 *swr1008*-58.92 *MUC4*-143.78 *sw3981*-194.99 *sw2440*-206.65 *sw769*-212.03 Mb

		QTL region (38-194 Mb)
	Inbreeding depression region (27-54 Mb)	
		LD Blocks

ITIH cluster

Inter- α -trypsin inhibitor, heavy chains (ITIH)-1, -3, -4 May play an important role in embryo implantation

 Contents lists available at SciVerse ScienceDirect

 Animal Reproduction Science

 journal homepage: www.elsevier.com/locate/anireprosci

 Sequencing and gene expression of the porcine ITIH SSC13 cluster and its effect on litter size in an Iberian × Meishan F2 population

 I. Balcells^{a,b,*}, A. Castelló^{a,b}, J.L. Noguera^c, A. Fernández-Rodríguez^d, A. Sánchez^{a,b}, A. Tomás^e

 Identified polymorphisms → analyzed endometrial gene expression of porcine ITIH-1, -3 and -4 genes → explain differences in

prolificacy of sows

Significant associations with NBA - ITIH-1 [2 SNP]
 ITIH-3 [4 SNP]
 ITIH-4 [4 SNP]

Conclusions

Genetic variation

- High correlation between f_G and f_M computed from SNP
- f_M is a very good predictor of f_G and *vice versa*

SNP chip is a useful tool for managing the loss of genetic variability, particularly when pedigree is unavailable

Inbreeding depression

- Significant inbreeding depression for NBA and TNB in chromosome 13 Region 27-54 Mb
 - Overlaps with a previously detected QTL region
 - ITIH cluster \rightarrow important role in embryo implantation

SNP chip is a useful tool for detecting genome regions associated to inbreeding depression

Acknowlegments

Dr Beatriz Villanueva Dr Almudena Fernández Dr Ana Fernández Dr Carmen Rodríguez Carmen Barragán

Prof Miguel Ángel Toro

Prof Luis Varona

Ministerio de Economía y Competitividad, INIA (RZ2010-00009-00-00 and JCI-2011-10896)

Advantages of genomic F rather than pedigreebased F

- It measures directly homozygosity (and potentially, the actual % of the genome that is autozygous), whereas pedigree-based F is only an expectation of such percentage
- It allows to estimate autozygous and inbreeding depression in specific genomic regions
- It is able to capture autozygosity arising from very distant common ancestors which is ignored by pedigree-based F because it refers to a relatively recent base population where all individuals are assumed to be non-inbred and unrelated.
- It can be estimated in populations whre pedigree recording is very difficult or impossible

Molecular inbreeding coefficients

• F_{snp}: defined as the genomic marker-by-marker inbreeding obtained based on the excess of SNP homozygosity

$$F_{snp(i)} = [OH_{(i)} - EH)/(n - EH)]$$

F for individual (i)	Observed	Expected
	homozygosity	homozygosity
	across all n SNP for	across all SNP for
	individual i	the population

 F_{roh}: defined as % of the genome in Runs Of Homozygosity → length of the genome that is ROH for the individual

 $F_{roh (i)} = \pounds ROH_{(k)} / length genome$

GWAS

d > 0 → 7 blocks of SNPs showing significant dominance effects and non significant additive effects

Gen coefficients << Mol coefficients

Heterozygosity of the base population

• Relationship f_M and f_G $(1 - f_M) = (1 - f_G)(1 - \sum p_i^2)$

Log transform

$$Ln(1 - f_M) = Ln(1 - f_G) + Ln(1 - \sum p_i^2)$$
$$Ln(1 - f_G) = Ln(1 - f_M) + Ln(1 - \sum p_i^2)$$

$$y = \beta_1 x + \beta_0$$

Expectation > the slope of the regressions has to be the same (=1)