

ABOGENA

Whole genome scan to detect QTL for major milk proteins in three French dairy cattle breeds

M.P. Sanchez¹, A. Govignon-Gion¹, M. Ferrand², M. Gelé², D. Pourchet³, M.N. Rossignol⁴, S. Fritz⁵, G. Miranda¹, P. Martin¹, M. Brochard², D. Boichard¹

¹ INRA, UMR1313 GABI, Jouy en Josas; ² IDELE, Paris; ³ ECEL, Doubs-Territoire de Belfort; ⁴ LABOGENA, Jouy en Josas; ⁵ UNCEIA, Paris; FRANCE

www.phenofinlait.fr

phenofinlait@idele.fr

The PhénoFinLait program

Fine composition of milk

Fatty acids

Proteins

Bovine

Ovine

Caprine

Estimation methods

Reference databases

Nutritional effects

Genetic effects

The PhénoFinLait program

Fine composition of milk

Fatty acids

Proteins

Bovine

Ovine

Caprine

Estimation methods

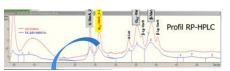
Reference databases Nutritional effects

Genetic effects

Milk protein composition

Effects on **techno-functional** milk properties: milk coagulation time, cheese yield, heat stability...

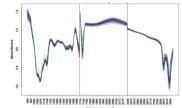
17


Milk protein composition

A reference analysis method

(Liquid Chromatography – Mass Spectrometry)

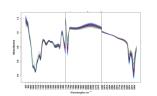
MIR (Mid-Infrared) Spectra routinely collected



Equations of prediction with 450 samples

long and costly

Easy to implement with limited additional cost MWW.Pr



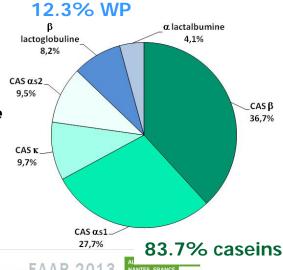
Milk protein composition at a large scale

MIR routinely collected

Equations

 α -lactalbumin β -lactoglobulin

 α s1-casein α s2-casein β -casein κ -casein


Whey proteins (WP)

Caseins

in g/100g milk = % milk

in g/100g protein = % protein

100g proteins ex. in Montbéliarde

	R²	Relative error
Caseins	80 - 92%	4 - 8%
WP	60 - 70%	12 - 14%

www.phenofinlait.fr

Animals: phenotypes

Almost 900,000 test-day records from 160,253 cows

First 3 lactations with at least 3 test-day records per lactation retained

Drood	3 first lactations	
Breed	MIR spectra	Cows
Montbéliarde (MO)	344,542	56,676
Normande (NO)	73,347	15,550
Holstein (HO)	89,730	17,983
Total	507,619	90,209

Animals: phenotypes & genotypes

Almost 900,000 test-day records from 160,253 cows

First 3 lactations with at least 3 test-day records per lactation retained

Durant	3 first lactations		Cows	
Breed	MIR spectra	Cows	genotyped 50K BeadChip	
Montbéliarde (MO)	344,542	56,676	2,773	
Normande (NO)	73,347	15,550	2,673	
Holstein (HO)	89,730	17,983	2,208	
Total	507,619	90,209	7,653	

Data analyses

Data pre-corrected for:

Fixed effects

Random effect of the perm. env.

and then, averaged per cow

$$y = XB + Za + Zp + e$$

Fixed effects

herd* test-day, stage of lactation, month * year of calving, analysis laboratory * spectrometer* test-month

Random effects

Genetic effect of the animal $(0, \mathbf{G} s_a^2)$ Effect of the permanent environment $(0, \| s_n^2)$ Residual effect $(0, I s_e^2)$

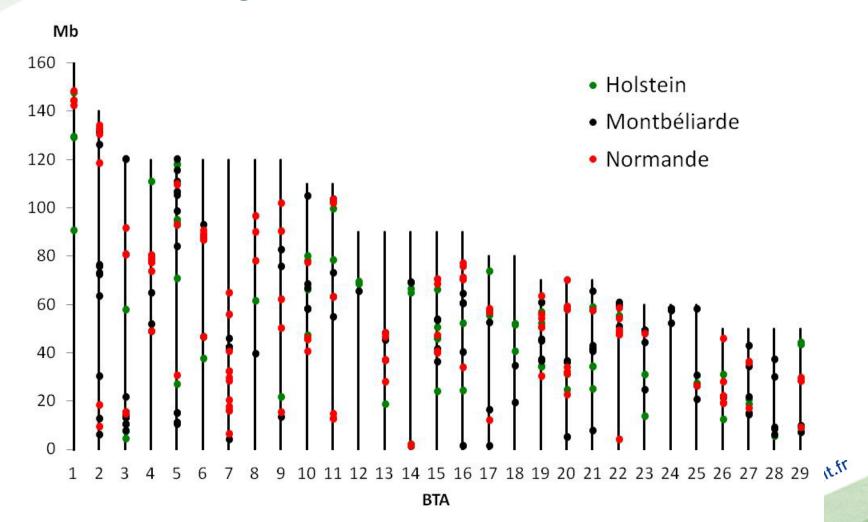
LDLA analyses (linkage + LD analyses - *Meuwissen et Goddard, 2001*) within breed:

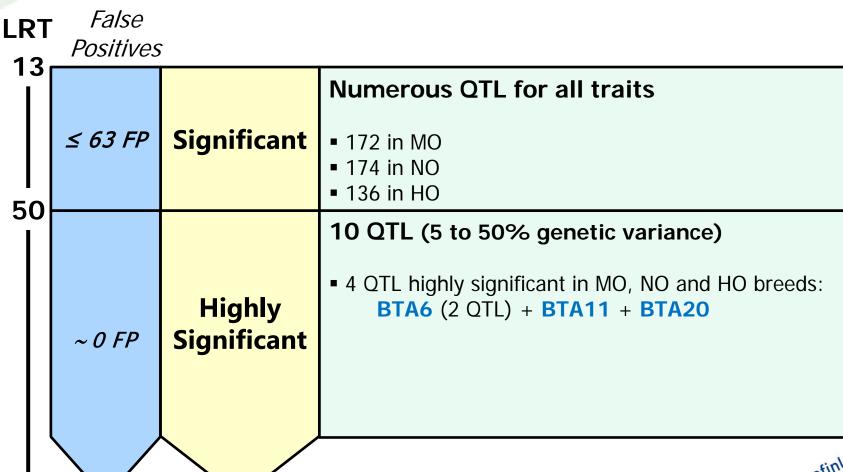
SNP effect estimated considering windows of 6 SNP (LD between SNP)

Test statistic = Likelihood Ratio Test (**LRT**)

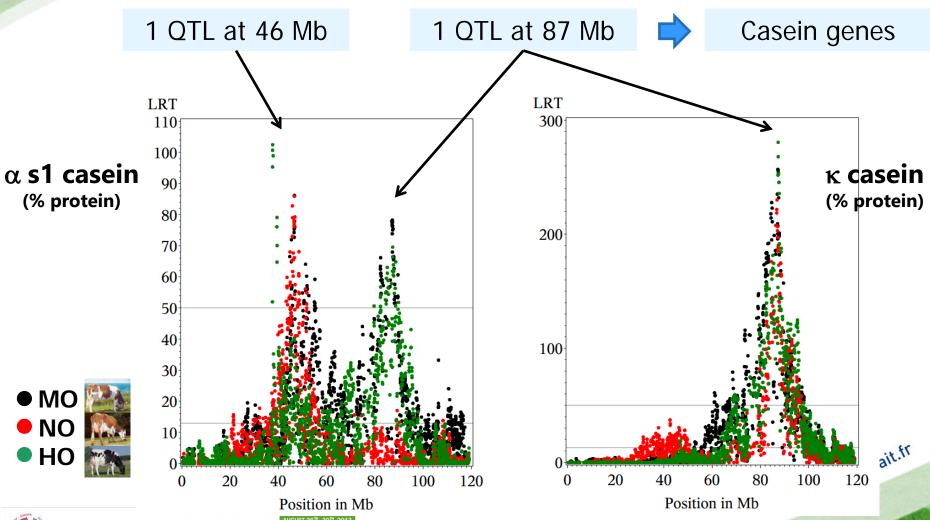
WWW.Y

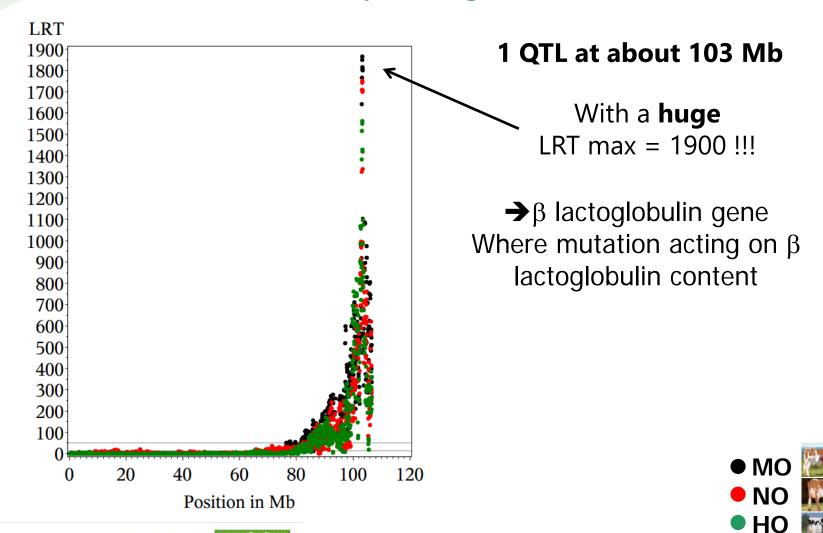
LRT	False Positives		
	≤ 63 FP	Significant	Numerous QTL for all traits 172 in MO 174 in NO 136 in HO



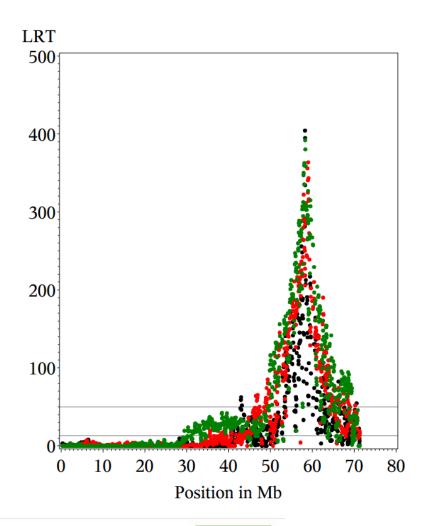

Results: Significant QTL (LRT ≥ 13)

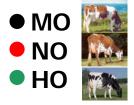





BTA6 – 2 QTL for caseins

BTA11 – 1 QTL for β lactoglobulin

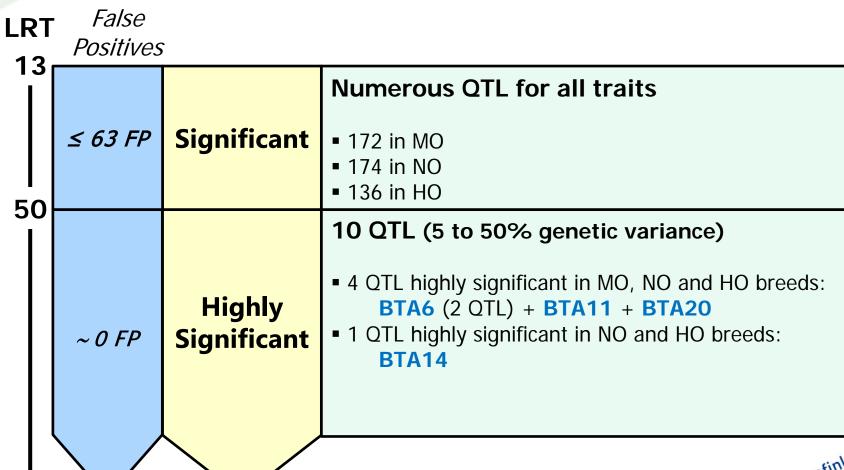


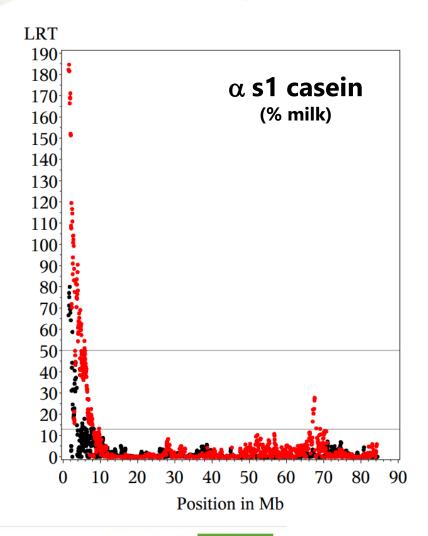


BTA20 – 1 QTL for α lactalbumin

1 QTL at about 58 Mb

→ Candidate gene?



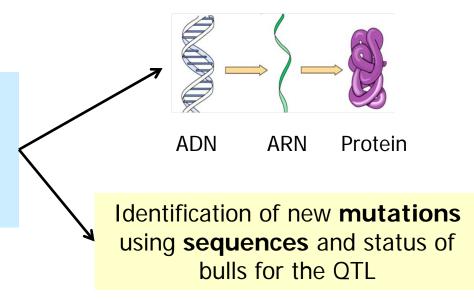


BTA14 – 1 QTL for several traits

1 QTL at about 1.8 Mb

→ DGAT1 mutation

LRT	False Positives		
50	≤ 63 FP	Significant	Numerous QTL for all traits 172 in MO 174 in NO 136 in HO
	~ 0 FP	Highly Significant	 10 QTL (5 to 50% genetic variance) 4 QTL highly significant in MO, NO and HO breeds: BTA6 (2 QTL) + BTA11 + BTA20 1 QTL highly significant in NO and HO breeds: BTA14 5 QTL highly significant in one breed: BTA2 + BTA13 + BTA20 + BTA25 + BTA29



Conclusions

With protein composition predicted from MIR spectra, a very large number of QTL in the 3 breeds, some with large effects

Protein composition estimated by MIR spectra + genotyping of cows can be used for genomic selection

PhénoFinLait population = first reference population for genomic selection

www.phenofinlait.fr

PARTNERS

FUNDINGS

www.phenofinlait.fr

