

All cows are worth to be genotyped!

D. Boichard, R. Dassonneville, S. Mattalia, V. Ducrocq, S. Fritz

Genomic Evaluation Properties

- Early evaluation
- As accurate for females as for males => big change of paradigm!
- Similar accuracy for all « conventional » traits (ie for all traits with progeny test evaluations)
- Much larger panel (x3-4) of young genomically evaluated bulls than of progeny tested bulls
 - => Within herd selection can be strongly enhanced, and possibly to a customized breeding objective!

Two complementary interests of large scale female genotyping: at the farmer and the population levels

For the population:

- Genotyped females are the reference population of the future,
 because the number of progeny evaluated bulls will decrease
- For many traits, 1 progeny tested bull is equivalent to 3-6 females with phenotype, depending on h²
- Only possibility for new traits: few bulls will be progeny evaluated for a completely new trait
- Major opportunity for breeds of limited size (eg: the male reference population is around 2500 in Montbéliarde or Normande breeds, and less than 500 in the other French breeds)

Two complementary interests of large scale female genotyping: at the farmer and the population levels

- For the population (2):
 - Broader screening of the population at a reasonable cost: one can more easily afford to genotype an original animal
 - Due to the much larger genotyping volume, the cost of genotyping will decrease for everybody, including for the breeding scheme
 - => Strong interest to encourage / find the most appropriate conditions for mass female genotyping

Within herd selection

- For the first time, a clear increase of dam-cow's pathway potential contribution to genetic gain
- A real opportunity to customize the genetic trend at the farm level, through the choice of bulls, but also through female selection
- The **issue**: selection **intensity** is strongly limited by the low natural prolificacy (~0.4 female calf / year),
- Nearly all young females are needed for replacement
- Embryo Transfer is expensive and will not generalize

Within herd selection

- The solution in the present conditions: Sexed Semen
- One can expect a strong increase of this technique in the near future, in parallel of genotyping
- Replacement made from the top 50% of the herd, based on genomic evaluation and on a breeding goal defined by the farmer
- Other females bred for other purposes (crossbreeding, sales...)

The question of the cost and profitability

- It is often argued that genotyping is not profitable
- Generalized female genotyping without sexing is likely not profitable (based on genetic gain arguments), unless at a very low price, due to low selection intensity and poor use of the information
- Sexing alone is profitable, in spite of its high cost. It is
 presently limited by technical and social constraints, not by a
 low return => not further developed here

Review of the literature

Study	Country	Genotyping cost	Compared to selection on pedigree	Replacement rate	Economic value of 1 TMI σg	Gain due to female genotyping
Chesnais 2011	Canada	CAN\$47	NO	10 to 40%	CAN\$159	CAN \$70
Pryce and Hayes	Australia	AU\$50	NO	15 to 30 %	AU\$80	AU\$41
Pryce and Hayes	Australia	AU\$50	YES	15 to 30 %	AU\$80	negative
Weigel et al 2012	USA	\$40	YES	10 to 90%	\$396	huge
Pryce (ICAR 2012)	Ireland	29 €	NO	select top 50%	62 €	46 €
Pryce (ICAR 2012)	Ireland	29€	YES	select top 50%	62€	-31€

Simple example, assuming sexing and no female selection on pedigree

- Additional genetic gain
 - p=0.5 => i=0.8
 - \blacksquare R²=0.7 => R=0.85
 - σ = 100€
 - T=5 years (probably less)
 - => Yearly additional ∆G~7€ per expression
- The number of expressions depends on
 - the trait (1 lactation / year, 1 « longevity » / cow)
 - the gene flow: individual (w=1), progeny (w=0.5), ...
 - the time horizon
 - the discounting rate

Illustration with a simple example, assuming sexing and no female selection on pedigree

- Result are highly dependent on the time horizon
- I assumed no additional heifer culling after genomic evaluation
 the immediate effect is zero, but this is a too conservative assumption
- Genomic evaluation is used only for the choice of the 50% matings for replacement
- The present superiority must be attributed to the previous genotypings, not to that of the present year

Illustration with a simple example, assuming sexing and no female selection on pedigree

Horizon	Expressions	Expected gain	
1-2	0	0	
4	3	19	
5	6	36	
6	8	48	
•••		7	

Discouting rate = 4%

Genotyping cost

- Already strongly decreased with use of LD chip, with very limited loss of efficiency
- Will continue to decrease with low sampling cost and large volumes
- An good target is 30€ and an upper bound target is 45€
- When using both genotyping and sexing, accounting only for genotyping cost and additional genetic gain on a steady state scheme, genotyping is profitable at a 5 years time horizon

Is it fair to compare with pedigree index?

- I would say No :
- Sire selection is already accounted for on the other pathways
- The remaining variability in pedigree index is rather small within herd
- Constraints on genetic variability limit the available selection intensity
- I did not consider the possibility of additional selection after genotyping

Additional interests

- Additional genetic gain is only a part of the return of genotyping
- Other consequences should be added to the benefit
- Some consequences are immediate
- For many farmers, they could be of more interest

List of Additional interests

- Much more accurate mating plan, based on GEBV with R²=0.7 for all traits
- Information on major genes and genetic abnormalities
- Parentage checking (or even assignation) at marginal cost
- More customized breeding objective
- Possible additional bull dams discovery
- Computation of true parentage coefficients
- True inbreeding coefficients
- New generation mating plans which optimize genomic information (inbreeding minimization, QTL complementation, non additive effects...)

The example of EuroGenomics

- Strategy based on a custom chip (presently EuroG10K)
- Add-On developed by INRA, Unceia, Labogena, Univ Liège,
 VIT, Aarhus Univ
- including
 - Additional markers for general or targeted imputation
 - 140 published mutations (for research or for release), in duplicate
 - An increasing number of candidate mutations, derived from research projects (association studies and sequencing)
 - => A cheap and efficient way to first validate and quickly disseminate results for better predictions
- Regular updates of the chip v2 available in october

- Illustration with the first month of use of the EuroG10k last spring
- No homozygous found in 3849 Holstein, 909 Normand and 2931 Montbéliard for HH1, HH3, HH4, MH2
- => statistical confirmation/«validation» of causative mutations
- Information available at marginal cost

QTL	Gene	Polymorphism	HOL	MON	NOR
HH1	APAF1	p.Q579X	3,5%	0,0%	0,0%
нн3	SMC2	p.F1135S	6,7%	0,0%	0,0%
HH4	GART	p.N290T	8,0%	0,0%	0,0%
MH2	SLC37A2	p.R12X	0,0%	12,1%	0,0%

Conclusion

- Genotyping will generalize in dairy production, in association with sexed semen
- Synergy between within herd selection, within herd management, reference population set-up and replacement
- SNP chips will continue to be enriched with causative variants
- New tools will be developed to make the best use of this information
- A rich resource for research (gene hunting, gene validation, non additive effects, G x E, ...) => Female genotyping and phenotyping is the source for the future innovations

