Genomics to avoid inbreeding and increase diversity

Theo Meuwissen

Norw.Univ.Life Sci. & Nofima

Ås, Norway

Introduction

GS adopted in many countries

• Expectations high:

- accurate GEBV for:

- Young genotyped animals
- Nonrecorded animals (trait nor pedigree)
 - Short generation interval
 - Difficult /costly traits
- Animals living in a different environment (GxE)
- Perhaps also to manage inbreeding

• Expectation:

- GS reduces ΔF because it increases r_{within fam}
 - Less selection from same families (Daetwyler etal. 2007)

• But:

- GS reduces generation interval (in cattle)
 - More rounds of selection / time period
 - Fewer parents per generation
- r_{within_fam} was very good in progeny test

AIM:

• What happens with ΔF when:

- Changing from progeny test to GS scheme
- Use genomic data to manage inbreeding
 - And how to do this

How to use genomics to increase diversity
 Counteract influx from foreign genetics

Counteract 'holsteinisation'

Moving from progeny test scheme to GS A simulation study

- Ne=200 (Fisher-Wright idealised pop.)
- 2,000 (=Ne*10) discrete generations
- 30 chroms of 1 Morgan each (10⁶ bp)
- Mutation 10⁻⁸/bp (infinite sites mutation mod)
- Recombination 10⁻⁸/bp
- 3,000 random SNPs => QTL
 - QTL effects from double exponential distrib.
- 15,000 SNPs with highest MAF =>markers
 - Marker \neq QTL

Simulation of breeding scheme

- Not possible to simulate entire cattle population
- Reduced size of simulated population
 - Number of selected males the same (in SD and SS)
 - Selected selection intensities identical
 - Conventional scheme: similar ΔG and ΔF
 - progeny test: keep test population outside breeding pop
 - Simulate progeny test results by DYDs:

$$DYD_i = \frac{1}{2}TBV_i + \sqrt{\frac{\frac{3}{4}V_g + V_e}{N_{dghtrs}}} * r_i$$

TBV & GEBV

$$TBV_{i} = \sum_{j=1}^{3000} x_{ij1} g_{j1} + x_{ij2} g_{j2}$$

• $Y_i = TBV_i + e_i$

•e_i~N(0,V_e)

•V_e is adjusted so that h^2 is .1, **.15** or .30

•GS: only applied to young-bulls;

•GBLUP (BLUP of marker effects; no blending):

$$y_i = \mu + \sum_{j=1}^{n} X_{ij} a_j + e_i$$
 $GEBV_i = \sum_{j=1}^{n} x_{ij} a_j$

Genomic selection scheme (GS)

----> Selection (TBLUP, unless stated otherwise)

NORWEGIAN UNIVERSITY OF LIFE SCIENCES

Institute for Animal and Aquacultural Sciences

GS schemes

	ΔG	ΔF	Acc
Conv	1	1	XX
GS_12	1.33	0.98	0.61
GS_30	1.25	0.47	0.63
GS_40	1.2	0.36	0.63

Conv: $\Delta G=0.22 \sigma_g/yr$; $\Delta F=.0025/yr$ Lillehammer et al, 2011

www.umb.no

Effect of h^2 on ΔG and ΔF

	ΔG		ΔF	
h2	0.1	0.3	0.1	0.3
Conv	1	1	1	1
PS_125	1.15	1.11	0.69	0.57
GS_12	1.4	1.29	0.93	1.14
GS_40	1.25	1.17	0.33	0.35

Conclusion: effect GS on ΔF in cattle

- r_{within_fam} is already high
- ΔF increases due to shorter generation int.
- Need to select some more elite sires
 - To counter inbreeding
 - Maintain a good reference population size
- Turn-over rate of elite sires higher with GS
 - Reduces ΔF

Genomic management of inbreeding

Introduction

Past: pedigree relations used for ∆F control

- Measures inbreeding at unlinked, neutral loci
- Do these exist?

Currently GBLUP: more accurate Gmatrix

Optimum contribution selection

• With genomic control of inbreeding ?

- $V_{gt} = (1-F_t)Vg_0 = > need control of F or \Delta F$
 - => need control of Coancest.
 - = > need control of \bar{A}

- \bar{A} equals average relationship of parents
 - Weighted by number of offspring
 - Including self relationships

 $\bullet F_t = C_{t-1}$

• $C_t = \frac{1}{2}\bar{A}_t$

• Control of \bar{A} controls F_t and V_{gt}

Optimum Contribution Selection (Meuwissen, '97)

- Maximises ΔG
- While restricting

$$\bar{A}_t = 2C_t = 2[C_{t-1} + \Delta F(1 - C_{t-1})]$$
$$\bar{A}_t = 2C_t \approx 2(C_{t-1} + \Delta F)$$

- \bullet Maximises genetic gain and controls ΔF
- Average relationship :
 - Pedigree: A
 - Genomics /SNP genotypes: G

In matrix notation G = X*X'/n

- $\mathbf{X} =$ matrix of standardised SNP genoptypes X_{ij}
 - If genotypes coded 0,1,2 then mean is substracted and divided by the standard deviation (mean = 0; sd = 1)
- n=number of SNPs

$$-G_{ik} = \sum_{j=1:n} X_{ij} X_{kj}/n$$

is correlation estimate

	ΔG		Δ F-ped	Δ F-genom
Δ FA-TEBV		2.26	0.005	0.007
Δ FA-GEBV		3.08	0.005	0.021
Δ FG-GEBV		1.91	0.004	0.005

Sonesson et al., GSE, 2012

AINERSITY O

Conclusions ΔF manag.:

- Traditional selection acts on Mendelian sampling terms (MST)
- △F management: constrain Var(MST)
 - OC acts on pedigree inbreeding
- Genomic selection acts on SNPs
- ΔF management should constrain Var(Δq)
 i.e. variance of freq. change of SNPs
 - OC acts on G matrix based on SNPs
- If not OC finds ways to increase △F that are undetected by the A matrix

Example: ΔF genomic >> ΔF pedigree

- Δ FA: 2 sibs / family is still OK
- What ΔFA does not see:
 - GBLUP selects sibs that inherited region X IBD from their sire
 - In other families, also this region X is selected
 - Generation after generation the frequency of a haplotype at region X is increased
 - Δ FA assumes relationships over generations is 0.5
 - But GBLUP focusses on the same haplo generation after generation

Genomics to increase between breed diversity

Rescue-ing a breed

Problem description

- Local breed that is no longer fashionable
- Semen of large commercial breed introduced
 - Assume Holstein semen => Holsteinisation
- Breed will be lost (will become Holstein)
 - Diversity will be lost
- How to rescue the breed ?
 - Using genomics
 - Assuming we can manage the selections in part of the breed

• Minimise:

 $\sum c_i \bar{G}_{i,hol}$

• c_i is the optimal contribution of the animal

• $\bar{G}_{i,hol}$ is the average genomic relationship of i with the introduced holstein bulls

Amador et al. GSE 2013

NORWEGIAN UNIVERSITY OF LIFE SCIENCES

Institute for Animal and Aquacultural Sciences

Recovery of local breed genome

- I generation of OC-G management
- 10 generations of OC-G management
- 1 generation of OC-A management

Amador et al. 2013

25

Conclusions: recovery of local genetics

- OC_goal: minimise relat. with Holsteins
- Recovery was almost 100%
 - If introgression was not high (<30%)
 - Not extending over many generations (\leq 3)
- Genomic relationships were effective tool
 - When used over >1 generation of management
 - Pedigree was effective when only 1 generation
- Inbreeding was increased due to recovery
 Focusses on limited part of genome

Overall Conclusions

• PT => GS scheme may increase ΔF

- Counteract by selection more elite sires

– Or control the genomic inbreeding

 \bullet Use of GS requires genomic control of ΔF

- GEBV increase freqs of same haplos over generat's

– \triangle FA control: \triangle FG 4-fold too high

- Genomics to enhance diversity
 - Example: recovery from recent introgressions
 - Genomic OC was often very successful

