Crossbreeding dairy cattle

Technology introduction and impacts on tropical smallholder production systems

ROSCHINSKY, R.*#, WURZINGER, M.* SÖLKNER, J.*, PUSKUR, R+

* BOKU University of Natural Resources and Life Sciences, Vienna

- + The World Fish Center, Malaysia
- [#] supported by BOKU Doc-Grant

64th Annual Meeting of the EAAP, Nantes, France Session 11: The role of imported genetics for sustainable breeding programmes.

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

05/10/2013 Chair: R. Baumung

why crossbreeding in the tropics?

- dairy production = livelihood resource-**DOOL** (Mekonnen et al., 2009)
- population growth (FAO, 2009)
- changing consumption patterns (FAO, 2009)

Global progress in food consumption

Department for Sustainable Agriculture Systems

why crossbreeding in the tropics?

McDowell 1985

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

local breeds productivity = major constraint

TABLE 1. Means for native breeds, their first cross herdmates, 3/4 crosses, and pure European breeds and deviations from herdmates (%).

Breed group	No. breeds	Age 1st calving	Milk yield	Days in milk	Calving interval
		(mo)	(kg)		(days)
		Performance			
Native	15	43.1	894	244	444
Two-breed cross	57	33.8	1903	316	437
3/4 cross	26	44.5	2072	288	454
European	7	36.5	2426	312	460
Two-breed cross	21	34.3	2108	285	415

indigenous x exotic dairy breeds:
> desirable traits → local breeds (e.g. Willham, 1970)

advantages crossbreds

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

Image: © ILRI 2011

- + ' income
- + employment
- + ' household nutrition (e.g. Nicholson et al., 1999)
- + integration agro-industry (e.g. Holloway et al., 2001)
- + ' lifetime production (e.g. Singh, 2005)
- + ' productivity/animal (e.g. Samdup et al., 2010)
- + income opportunities (women) (e.g.Tiplida and Kristjanson, 2008)

+ livelihood improvement (e.g. Peacock et al., 2011)

disadvantages crossbreds

- " endemic disease and climatic tolerance (e.g. Wilson, 2009)
- ' feed demand (e.g. Tassew and Seifu, 2009)
- management (e.g. Wilson, 2009)
- ' animal health care (e.g. de Haan, 1995)
- ' Workload (women) (e.g. Tiplida and Kristjanson, 2008)
- high initial investment (e.g.Holloway et al., 2001)
- threat local AnGR (e.g. Wollny et al., 2002)

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

Image: © ILRI 2011

crossbreeding = sustainable improvement?

- crossbreeding encouraged (governments, NGOs)
- slow up-take rate
 - > few programs successful (de Haan, 1995),
 - widely used but often unsustainable (Kosgey et al., 2006)
- situation after introduction on smallholder farms?

knowledge gap about <u>adaptation</u> of crossbreeding at <u>farm level</u>

University of Natural Resources and Life Sciences, Vienna

O Department for Sustainable Agriculture Systems

Our research wanted to identify...

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

crossbreeding introduction

motivations & challenges

crossbreeding adaptation

perceptions of crossbred performance

impacts

at farm level

nage: © Roschinsk

study site and context -Ethiopia

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

crossbreeding context:

government extension program (heifer multiplication & distribution), 122 farms Holstein Friesian dominant

partner:

Amhara Regional Agricultural Research Institute (ARARI)

Amhara

2000m a.s.l. 11-30°C ; 1200-1500mm rain-fed highland temperate mixed farming

05/10/2013

64th Annual Meeting of EAAP, Nantes, France - Session 11 – Dipl. Ing.ⁱⁿ Romana Roschinsky

study site and context -Uganda

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

crossbreeding context:

farmer driven; 65 farms Holstein Friesian dominant

partner:

National Animal Genetic Resource Center and Data Bank (NAGRC&DB)

Opit Forest Reserve image: © wikipedia AITIUR Masindi Bunia Uganda ironko Mha Nakibungulia Fort Portal Bombo Kasowa Kikura Bungoma Kampala Kasese akamega Entebbe Chanjojo Bondo Bukoba Tarin Musoma

Guli

Kitau

Kisumu

Ankole

image: © googlemaps

1500m a.s.l. 17-30°C; 1000-1500 mm rain-fed pastoral/banana-coffee system

05/10/2013

study site and context -India

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

Maharashtra

image: © googlemaps

520m a.s.l. 9-41°C; 1000-1500 mm (dry) rain-fed mixed farming system

crossbreeding context:

NGO driven (livestock program), 61 farms Holstein Friesian dominant

partner:

BAIF Development Research Foundation

data collection and analysis

- 248 farmer interviews
- respondents:
 - resident farmers
 - household head/spouse
 - > at least 8 years crossbreeding
 - local dairy cattle before
 - ≽ gender
- Statistical Analytical Software (SAS Institute Inc., 2010)
 - Procedure frequency

O Department for Sustainable Agriculture Systems

Division of Livestock Sciences WG Animal Breeding

additional information:

- ▹ farmers
- veterinarians

motivation:

- income
- higher milk yield
- better potential crossbreds
- others advice

selected results – crossbreeding information

selected results – crossbred animal source

University of Natural Resources and Life Sciences, Vienna

selected results – adaptation breeding strategy

Division of Livestock Sciences WG Animal Breeding

University of

selected results – adaptation breeding strategy

Department for Sustainable Agriculture Systems

> **Division of Livestock Sciences** WG Animal Breeding

60

70

selected results – perception crossbred cow performance

University of Natural Resources and Life Sciences, Vienna

17

selected results – impacts production system

increase workload

(94%)

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

more income (98%)

new structures (95%)

selected results – impacts production system

new feedstuffs (84%)

new markets (84%)

University of Natural Resources and Life Sciences, Vienna

WG Animal Breeding

18

more workers

(48%)

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

increased vet demand (73%)

new grazing management (71%)

Division of Livestock Sciences WG Animal Breeding

selected results – crossbreeding challenges

Division of Livestock Sciences WG Animal Breeding

We conclude...

- initiators conform with local context
- fellow farmers important
- motivation: income increase
- link information source " crossbred animal source
- breeding adaptation
 - reason : context specific
 - if alternatives available
 - increase milk yield by upgrading: lack knowledge optimal level (e.g. Syrstad, 1996)

Division of Livestock Sciences WG Animal Breeding

- perceptions of performance/health fit prior experiences in tropical settings
- substantial production system change
- challenges: highly context specific
 - \succ natural resources \rightarrow environmental sustainability?
 - increased workload

We conclude...

Sustainable crossbreeding?

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

high input

- > manpower
- investment
- resources
- animal health care
- management

high output

- income increase
- employment creation
- milk market access
- livelihood improvement
- farmers recommend crossbreeding
- enviromental impact
- <u>resources</u>, <u>markets</u> and <u>support system</u> crucial for success

Crossbreeding dairy cattle

Technology introduction and impacts on tropical smallholder production systems

University of Natural Resources and Life Sciences, Vienna

Division of Livestock Sciences WG Animal Breeding

Thank you very much for your attention!!

Contact:

romana.roschinsky@boku.ac.at

presenting author supported by BOKU DOC grant

64th Annual Meeting of the EAAP, Nantes, France Session 11: The role of imported genetics for sustainable breeding programmes.

05/10/2013 Chair: R. Baumung

references

University of Natural Resources and Life Sciences, Vienna

- DE HAAN, C. (1995): Development support and livestock. IN WILSON, T. R., EHUI, S. & AND MACK, S. (Eds.): Livestock development strategies for low income countries Proceedings of the joint FAO/ILRI roundtable on livestock development strategies for low income countries. Addis Ababa, Ethiopia, Food and Agriculture Organization Rome, Italy.
- FAO (2009): How to Feed the World in 2050. Executive Summary. How to Feed the World in 2050. Executive Summary (Vol. 2050, pp. 1–35). Rome, Italy: FAO (Food and Agriculture Organisation of the Unites Nations). Retrieved from http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World _in_2050.pdf
- HOLLOWAY, G. J.; BARRETT, C. B.; EHUI, S. (2001): Cross-bred cow adoption and milk-market participation in a multivariate, count-data framework. Eurostat. 233-242.
- KOSGEY, I. S., BAKER, R. L., UDO, H.M.J. and VAN ARENDONK, J.A.M.: (2006): Successes and failures of small ruminant breeding programmes in the tropics: A review. Small Ruminant Research 61: 13-28
- MCDOWELL, R. E. (1985). Crossbreeding in tropical areas with emphasis on milk, health, and fitness. *Journal of dairy science*, 68, 2418–2435 ST – Crossbreeding in tropical areas wi. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-0022127065&
- MEKONNEN, H.; DEHNINET, G.; KELAY, B. (2009): Dairy technology adoption in smallholder farms in Dejen district, Ethiopia. Tropical Animal Health and Production 1-8.

Division of Livestock Sciences WG Animal Breeding

- NICHOLSON, C.F., THORNTON, P. K., MOHAMMED, L., MUNINGA, R. W., MWAMACHI, D. M., ELBASHA, E. H., et al. (1999): Smallholder Dairy Technology in Coastal Kenya. An adoption and impact study. ILRI Impact Assessment Series 5. Nairobi, Kenya: ILRI International Livestock Research Institute. Retrieved from http://www.ilri.org/Infoserv/webpub/fulldocs/CoastImp/Toc.htm
- SASINSTITUTE INC. (2010): SAS Software version 9.2. Cary, NC, USA., SAS Institute Inc.
- SAMDUP, T., UDO, H. M. J., EILERS, C. H. A. M., IBRAHIM, M. N. M., & VAN DER ZJIPP, A. J. (2010). Crossbreeding and intensification of smallholder crop–cattle farming systems in Bhutan. Livestock Science, 132(1-3), 126–134. doi:10.1016/j.livsci.2010.05.014.
- SINGH, A. (2005): Crossbreeding of cattle for increasing milk production in India: A review. Indian Journal of Animal Sciences, 75, 383–390.
- TASSEW, A., and SEIFU, E. (2009): Smallholder Dairy Production System and Emergence of Dairy Cooperatives in Bahir Dar Zuria and Mecha Woredas, Northwestern Ethiopia. World Journal of Dairy & Food Sciences, 4(2), 185–192. Retrieved from http://idosi.org/wjdfs/wjdfs4(2)/16.pdf
- TIPILDA, A., & KRISTJANSON, P. (2008). Women and Livestock Development: A Review of the Literature. Nairobi, Kenya: International Livestock Research Institute (ILRI). Retrieved from http://www.ilri.org/research/Index.asp?SID=213

references

Division of Livestock Sciences WG Animal Breeding

pictures & figures

• Figures:

- unless indicated otherwise: all photographs by Romana Roschinsky © 2011-2013. All participants have given their permission to be photographed
- slide 2: graph FAO, 2009 (see reference list)
- slide 3: Table from McDowell, 1985 (see reference list)
- images slide 4 and 5: © ILRI 2010 Presentation Alan Duncan, ILRI Annual Program Meeting, Addis Ababa, 15 April 2010. Retrieved from: <u>http://de.slideshare.net/ILRI/ilri-annual-program-meeting-2010</u>.

Maps:

- All maps from googlemaps.com
- Location maps on globe: wikipedia.com

Results – Herd size change details

University of Natural Resources and Life Sciences, Vienna

O Department for Sustainable Agriculture Systems

