

Variability among individual young beef bulls in methane emissions

20% of GHG in France originate from Agriculture

and 60% of Agriculture GHG in France originate from Beef or Dairy Cattle production

Enteric Methane emissions markedly contribute to GHG emissions in:

Dairy cattle production: 43% of GHG

Beef cattle production: 52% of GHG

Methane warming properties:

High Global Warming Potential (x25)

Short Atmospheric Half-Life (7 years)

are primary arguments for research efforts in Mitigation of Cattle Enteric Methane emissions

Several strategies are currently explored for mitigating Enteric Methane emissions:

- > Increased herd productivity (less replacement heifer needed) => less GHG/kg product
- Increased production * (through feeding level or genetics) => less CH4/kg product * Possible conflicting effects with other GHG (CO2 N2O) emissions
- Diet composition (Celluloses vs Starch; Lipid supply)
- > Feed additives or biotechnologies (Modulation of rumen microbial methanogens)
- Breeding cattle for lower RFI ? (phenotypic correlations of +0.44 and +0,35 in beef steers) (Nkrumah et al. 2006; Hegarty et al. 2007)
- >Breeding cattle that emits less methane ?

Individual variability of Methane emissions does exist among animals fed the same ration:

Coefficient of Variation: 10% to 20% of the mean

Arguments on the animal genetic determinism of Methane emissions:

h²=0.29 and repeatability=0.55 with 1225 sheep measured (2 x 2 days) in Respiratory Chambers

(Pinares-Patino et al., 2013)

Genetic studies require a large number of phenotypes :

the measure of daily Methane emission rate of cattle is difficult however

Respiratory Chamber are the "golden standard" where gas concentrations & air flow rate are continuously measured all over the 24 hours a day.

 $\checkmark a$ very limited number of cattle can be measured

✓1 or 2 days maximum measurement

- ✓ the confinement may modify the feeding behavior
 - The SF6 tracer technique allow measuring the whole day methane emission through a <u>continuous sampling of expired air</u>.
 - ✓ require burdensome handling
 - ✓ few days measurement
 - \checkmark may modify the feeding behavior

Short period sampling

Methane emission highly fluctuates along day and night in relation with the feeding behavior.

✓<u>1 hour whole CH4 emission</u> measured in Portable Accumulation Chambers (sheep)

✓ <u>CH4 emission rates</u> measured in GreenFeed[®] systems (cattle)

Objective of the experiment: Estimating variability and repeatability of <u>CH4 and CO2 emission rates</u> measured with GreenFeed[®] systems

Short period sampling :

Limited feed distributed for attracting the animal in the feeder for few minute visits

> Measure of CH4 emission rates during visits :

 $CH4 = F^{\circ} \{ (CH4_t - CH4_{base}) \times Q_{air} \}$

Material and Methods

> Animals:

18 young bulls (3 pens)

- mean age = 10 months
- mean LW = 323 kg

6 weeks measurements

- pellet ration distributed in trough equipped with Calan gate
- restricted feeding : increase 2 to 5 kg/day
- straw bedding

Material and Methods

> 1 GreenFeed equipment / pen

- Distribution of 6 drops (60 g each) at each visit (45 seconds between 2 drops)
- Minimum interval between 2 visits: 2 hours

Material and Methods

- Analysis of data
 - ✓ Dependent variables :
 - visit CH4 emission rate measures (g/d)
 - daily CH4 emission rate estimates (g/d)
 - daily DMI (kg/d)
 - ✓Environment effects
 - pen group of animals (3)
 - experiment day (42)
 - visit hour (24)
 - ✓Animal effect (18)

> Number and duration of the 7,860 visits:

- v number = 9.1 ± 3.6 visits / animal*day
- ✓ duration = 5.1 ± 1.4 minutes/ animal*day
- ✓ even hour repartition among animals

Results: variability among visit CH4 emission rate measures

CH4 : 233 ± 85 (g/j) CV = 0.36

 $\sigma^2_{\text{resid}} = 63\%$ $\sigma^2_{\text{animal}} = 22\%$

$$\sim \sigma^2_{date} = 8\%$$

Results: variability among visit CH4 emission rate measures according to visit hours

CH4 : 233 ± 85 (g/j) CV = 0.36

 $\sigma^2_{\text{resid}} = 63\%$ $\sigma^2_{\text{animal}} = 22\%$ $\sigma^2_{\text{date}} = 8\%$ $\sigma^2_{\text{hour}} = 7\%$

Results: variability of daily measures during the whole experiment period (n=750)

Daily CH4 emission rate variability

√CH4 : 233 ± 55 (g/d) CV = 0.24

 $\sigma^{2}_{resid} = 31\%$ $\sigma^{2}_{animal} = 48\%$ $\sigma^{2}_{date} = 20\%$ <u>rep = 0,61</u>

>Daily DMI variability

✓DMI: 6.06 ± 1.14 (kg/d) CV = 0.19

$$σ^2_{resid} = 10\%$$
 $σ^2_{animal} = 3\%$ $σ^2_{date} = 87\%$ rep = 0,22

Results: variability within and across weeks

(splitting the experiment in 6 one-week periods)

Within week daily CH4 emission rate variability

$$✓$$
CH4 : 233 ± 51 (g/d) CV = 0.22
 $σ2resid = 26%$ $σ2animal = 70%$ $σ2date = 4%$ rep = 0,73

><u>Within week DMI variability</u>

✓ DMI: 6.06 ± 0.58 (kg/d) CV = 0.10

$$\sigma^2_{resid} = 36\%$$
 $\sigma^2_{animal} = 16\%$ $\sigma^2_{date} = 49\%$ rep = 0,30

> Correlations across 6 weekly averages of CH4 emission rate or DMI

CH4	week 1	week 2	week 3	week 4	week 5	Aver.	
+1	0,82	0,88	0,86	0,86	0,91	0,87	
+2	0,7	'5 O,3	89 0	,66 0	,75	0,76	
+3		0,65	0,73	0,55		0,64	
+4		0,4	7 0,6	53		0,55	
+5	0,35						

DMI	week 1	week 2	week 3	week 4	week 5	Aver.
+1	0,76	0,67	0,56	0,53	0,68	0,64
+2	0,6	67 C),46 (0,29	0,03	0,36
+3		0,38	0,52	-0.02		0,29
+4		0,	15 0,	,31		0,23
+5			0,05			0,05

Is GreenFeed accurate enough for detecting individual differences among cattle in CH4 emission rate ?

- > Visit CH4 emission rate is highly variable due to sampling and measurement errors
- > Visit hour has a significant effect => should be taken into account
- > With 9 visits per day, the daily average is fairly repeatable (rep= 0,61)
- A two week average will provide highly repeatable estimate (rep>0,85) and can be used for ranking animals on their CH4 emission rate capacity.

