

Classical selective sweeps revealed by massive sequencing in cattle

Saber Qanbari

Department of Animal Sciences Animal Breeding and Genetics Group Georg-August-University Göttingen, Germany

64th EAAP Meeting August 26th-30th 2013, Nantes, France

Acknowledgements

In collaboration with:

- H. Simianer
- H. Pausch
- S. Jansen
- **R. Fries**
- **M.** Somel
- **R.** Nielsen

T.M. Strom, T. Maitinger, T. Wieland, S. Eck, E. Graf., A. Benet-Pages GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

HelmholtzZentrum münchen

German Research Center for Environmental Health

Outline

Background

- Methods to detect [positive] selection
 - Local variability
 - Allele frequency spectrum
 - Haplotype based approaches
- Case study in cattle
 - Linkage Disequilibrium
 - Selection signature analyses
 - GWAS
 - Conclusions

Background: domestication of cattle

- Cattle is domesticated from aurochs (*B. primigenius*) 10'000 BCE
- Major impact on human civilization
- Domestication/breed formation created > 800 breeds
- Modern cattle have different appearance and production level, milder temper,

Motivation:

- How human interaction has influenced the cattle genome?
- What proportion of the genome is involved in domestication/adaptation?
- Which traits are involved?

 $\label{eq:linear} http://www.strideguides.com/unearthingthepast/\ webcontent/aurochs.html$

Detecting positive selection

- Testing candidate genes (very few proven examples)
- GWAS for marker-trait associations (difficult for multi-genic complex trait and fixed variation, recording problems ...)
- Looking for patterns of selection
 - Difference between species
 - High proportion of function altering mutations (dN/dS)
 Age: millions of years
 - Within-species variation
 - Differences between populations (e.g., Fst, XPEHH)
 - Intra-population analysis (e.g., Heterozygosity, CLR and iHS)

Signatures left by positive selection:

'selective sweep': Hitch-hiking theory of Maynard-Smith and Haigh (1974)

before

Haplotypes before selection

1) Low local variability

2) Excess of frequent derived and rare alleles

3) Long-range (unbroken) haplotypes

after

Figure 18-22 Introduction to Genetic Analysis, Tenth Edition © 2012 W. H. Freeman and Company

Testing positive selection:

I. Low diversity

II. Allele frequency spectrum

III. Haplotype analysis

e.g., Composite of likelihood ratio test (CLR) (Nielsen et al. 2005):

e.g., EHH/iHS, (Sabeti et al. 2002 & Voight et al. 2006)

Genetic material: (from Jansen et al. 2013)

- General Additional Additiona
- □ Mean accumulative genome coverage: 261.9 ± 56
- Number of SNPs: 15'060'623
- □ Mean Inter-marker space: 166.8 ± 393 bp
- □ Mean allele frequency: 0.27 ± 0.27

Linkage Disequilibrium

Allele Frequency Spectrum

- Genome was scanned by |iHS|, CLR metrics (ongoing + fixed selection)
- Heterozygosity, Tajima D, Fay & Wu H and |nSL| were also measured for further inspection
- [except CLR] metrics were accumulated in windows of 40-Kb
- In all 62'196 windows/values were estimated (in average 240 SNPs per window)
- Only top 1% (genome-wide percentile) signals considered as selection candidates
- 106 candidate sweeps were detected

Genomic distribution of candidate regions

Candidates genes under selection ...

Chr	Gene	Position (bp)	P _{iHS}	P _{CLR}	Function/association
6	KIT/KDR	72'087'087	0.00029	0.00011	Pigmentation
22	MITF	32'017'564	0.00172	0.00709	pigmentation
18	MC1R	14'785'816	0.00785	0.00156	pigmentation
21	NRG4	32'012'049	0.00368	0.00221	Pigmentation
2	Erbb4	99'904'366	0.00203	0.00855	Pigmentation
17	ULBP3	40′044′391	0.00691	0.00917	Pigmentation, sudden whitening of the hair
15	OR51A7	50'749'853	0.87230	0.00048	Olfaction perception
8	OR13C8	96′134′318	0.57280	0.00043	Olfaction perception
7	OR2	15′246′693	0.00502	0.00194	Olfaction perception
7	OR	43′810′382	0.00113	0.00905	Olfaction perception
4	TAS2R16	88'279'974	0.00143	0.00887	bitter taste receptor, type 2
17	TMEM132D	48'769'405	0.00087	0.00021	Neurobehavioral functioning (Anxiety)
5	CACNA1C	109'068'036	0.48366	0.00013	Bipolar disorder and schizophrenia
3	GRIK3	109'293'546	0.00761	0.00761	Reward-related learning

Candidates genes under selection ...

I. Pigmentation ...

- I. Pigmentation NRG–ErbB4 pathway
- Pigmentation (targeted by positive selection in humans Pickrell et al. 2009)
- QTLs for psychiatric disorders

NRG4-BTA21

ErbB4-BTA2

102

II. Neurobehavioral functioning

Anxiety-related behavior gene (*TMEM132D*) and reward-related learning gene (*GRIK3*)

GWAS as additional evidence

Sequenced-based imputation

A two-step imputation:

GWA studies (15M SNPs and 3062 individuals) for 4 traits:

- □ The "proportion of daughters without spotting"
- The "proportion of daughters with red head"

"Somatic cell count"

and "body size"

GWAS: Coat coloring ...

Pausch et al. (2011)

GWAS in Holstein: Coat coloring

A GWAS for proportion of black phenotype. (Hayes et al. PLoS Genetics 2010)

MC1R gene: a closer look

18

18

400 -300 -200 -

100 -

3

2

IHS

ZHet

14

16

Position- Mb

18

14

16

Position-Mb

Conclusion

- Genome-wide, 106 classic sweeps were identified
- GWAS shows, coat colorings are co-localized with major QTLs
- Candidate genes are related to domestication phenotypes such as coat coloring, sensory perceptions and neurobehavioral functioning.
- As demonstrated for MC1R, selection can be detected if desired allele is fixed , and GWAS fails.
- Comparing GWAS results, shows complexity of coat coloring genetics in cattle.
- LD in cattle decays at a much faster rate than previously thought.

Thank you for attention !