

Progress in Pigs TOPIGS

Robustness in Pigs

Egbert F. Knol 26-08-2013

Outline

- selection and robustness
- pig farm of the future
- examples
- traits

Animal selection

- Breeding values
- Ranking
- BLUP

starting point for definitions of robustness in other fields, like animal production. Knap (2005) defined robust pigs as "pigs that combine high production potential with resilience to external stressors, allowing for unproblematic expression of high production potential in a wide variety of environmental conditions". Whereas Ten Napel *et al.* (2006) defined robustness in a broad sense as

Robustness model

Challenge

Robustness model

Challenge

Ranking issues

Possible approaches

- 1. Challenge in specific forms
 - a) Climate
 - b) Disease
 - c) Feed
 - d) Labor
- 2. Challenge in general terms: reaction norms
- 3. Predictable, 'residual low' animals
- 4. Choice of appropriate traits

Fits nicely

invited	Robustness in pigs E.F. <mark>Knol</mark>	213
	Heat tolerance and reproductive performance in two sow lines S. Bloemhof, E.F. Knol, I. Misztal and E.H. Van der Waaij 1 Specific	214
	Genetic parameters of thermoregulatory response in lactating sows JL. Gourdine, D. Renaudeau, K. Benony, C. Anaïs and N. Mandonnet	214
	Reaction norm for fat plus protein daily yield to evaluate ge 2 Reaction Norms Poats A. Menéndez-Buxadera, H.M. Abo-Shady, A. Molina, M.J. Carabaño, M. Ramón and J.M. Serradilla	215
	Genetic variation in macro- and micro-environmental sensited. 3 Residual Low Isteins	215
	How Corsican cattle breeders consider the adaptation of the data and t	216

FARM of the future

a man and a second	without the same	in a second second second	House and some state	City in
	Castlero publicado	2012	2022	-
+++	# sows	1200	2400	64
	# labour	4	5	4
	Weaned/s/y	30	34	-
		a state of the sta	T	

Per worker: 9,000 → 16,320 piglets weaned

Words that come to mind

- Low in labor
- Easy to manage
- Uniform
- Problem free
- Challenge proof
- Society acceptable

Cheap

Cheap

Cheap

La	atst	e 2	20 cycli			Werper	n					Spener	۱		Cyclu	S	
Cy	ic In	nt C	ekdatum)	Beer	2e Beer	Datum	Drg	Lg	Dg	Mm	Uitv	Datum	+/-	Opg	Duur	Index	Gesp/j
	6	2	1/2005	28V66	29V06	5/27	115	16	1		1	6/22	-4	11	147	2.48	27.3
	6	6	28/2005	28V85	64	10/21	115	14				11/23	8	22	154	2.37	52.1
	6	1	1/29/2005	29V91	29V20	3/22	113	20				4/19	-8	12	147	2.48	29.8
	5	4	24/2006	28V94	28V15	8/16	114	15	3			9/13	-4	11	147	2.48	27.3
	5	9	18/2006	C0003	C0034	1/10	114	15	3	1		2/7	-3	12	147	2.48	29.8
	5	2	12/2007	E0155	E0473	6/5	113	15	2		1	7/6	-3	11	149	2.45	26.9
	4	7	10/2007	E0842	E0578	11/2	115	15	1			11/28	-4	11	145	2.52	27.7
	5	1	2/3/2007	E1045	E0346	3/26	114	17	1		1	4/23	-5	11	147	2.48	27.3
	05	4	28/2008	C0076	C0077	8/20	114	15	2	2	1	9/17	-3	11	147	2.48	27.3
1	15	S	22/2008	S1920	S1920	1/14	114	13				2/11	-1	12	147	2.48	29.8
1	25	2	16/2009	D-LIJN	D-LIJN	6/11	115	15	3			7/8	-3	12	147	2.48	29.8
	35	7	13/2009	D-LIJN	D-LIJN	11/4	114	14	2			12/1	-2	12	146	2.50	30.0
	45	1	2/6/2009	D-LIJN	D-LIJN	3/31	115	13	2		1	4/29	-1	11	149	2.45	26.9
	54	ŧ	/3/2010	TEMPO	TEMPO	8/25	114	14	2			9/23	-2	12	147	2.48	29.8
	65	Ş	28/2010	TEMPO	TEMPO	1/21	115	15	4			2/17	-3	12	147	2.48	29.8
	75	2	22/2011	TEMPO	TEMPO	6/16	114	12	3			7/14	.0	12	147	2.48	29.8
	85	7	19/2011	TEMPO	TEMPO	11/10	114	16	2			12/8	-3	13	147	2.48	32.3
	95	1	2/13/2011	TEMPO	TEMPO	4/5	114	14	4			5/3	-2	12	147	2.48	29.8
2	04	ŧ	7/2012	TEMPO	TEMPO	8/30	115	12	4	i		9/27	0	12	147	2.48	29.8
1	15		0/2/2012	TEMPO	TEMPO												

Some examples

Possible approaches

- 1. Challenge in specific forms
 - a) Climate
 - b) Disease
 - c) Feed
 - d) Labor
- 2. Challenge in general terms: reaction norms
- 3. Predictable, 'residual free' animals
- 4. Choose appropriate traits

1a Climate is next

Heat tolerance and farrowing rate in two sow lines

Summary of a PhD project

Saskia Bloemhof, Egbert Knol, Ignacy Misztal, Liesbeth van der Waaij

TOPIG

1a Poster on 'priming'

Figure 2. Sow's average litter size in relation to heat load groups at day of sow's successful insemination for the three intrauterine heat stress classes (severe, moderate and no). Heat load group 0 (≤21.7°C), group 1 (21.8 to 24.6°C), group 2 (24.7 to 29.6°C), group 3 (\geq 29.7°C).

STRESS DURING INTRAUTERINE SUBSEQUENT LITTER SIZE IN SOWS

, Saskia Bloemhof', Liasbeth van der Waaij' and Egbert Knof Animal Breading and Genomics Centre, Wageningen University

nterval of Bo to too days of intrauterine development. us tolerance later in life. a performances.

Results

rinedevelopment

NI ON 15 famme in

puerri litter si ze

rformance.

Critical period divided in three heat stress classes

Servere ≥ 30° C Moderate so* - ap*C No < so* C

Represe. Represent considelitions between littler size of sow and daily maximum ben persbure while she was in the uterus. Day a was the day the new was conceived.

gues a Sow's a versge littler size in relation to heat log ough at day of sow's successful i memination for the neef intrauferine heat abreau classes bewere moderate and not. Heat load group o (size #C), group o (stab 34,4PC), group a (size 710 34,4PC), group 3 (size #C).

1b PRRS challenge

PRRS Piglet losses

Stillborn and mummified

Robustness model

Variance components	Healthy	Disease
#Litters	17430	948
Animal	0.15	1.08
Permanent environment	0.20	
Herd-year-month	0.01	2.63
Service sire	0.01	0.08
Residual	2.40	11.97
Total	2.77	15.76
Heritability	0.05	0.07

Progress in Pigs

1c Feeding issues

TOPIGS

2 Reaction norms: Litter size

Sire evaluation for total number born in pigs using genomic reaction norms approach¹

F.F. Silva ^{*,2}, H. Mulder [§], E.F. Knol[†], M.S. Lopes [†], S.E.F. Guimarães[‡], P.S. Lopes[‡],

J.W.M. Bastiaansen §

Correlations unfavourable

Conclusion: single line for all markets is suboptimal (?)

Y = HYS + animal + residual

- Residual is partly heritable
- Selection can increase predictability

Two extreme EBV sires

Progress in Pigs

4 Traits combinations

Get 'in pig' or skip 3 weeks – Ideal adaptation mechanism

I Farrowing rate: Sows parity 2-7

I Farrowing rate: Gilts

II Merry go round

More standardized pig production farmers want less problems so that they can plan better

36% of sows is easy

Trait:	Mean
Inheat-survival	87.23
NR-survival	80.59
FR-survival	68.43
BA-survival	39.78
Selection-survival	36.04
27,781 observations	

In heat <7 days, no return into heat, no abortion, no stillborn, not culled

Slippery when wet

III Piglet survival peri partum

IV Social effects Daily gain

Positive effect on growth of pen mates

High social breeding values (for growth)

Tailbiting consequences

Approaches and traits

	Reaction norm	Residual Selection	Challenge trials	
Survival				
Performance	Х			
Farrowing rate				
Immune Response			Х	
Uniformity		Х		

Thanks to

Low input Breeds

- Saskia Bloemhof
- Claudia Sevillano
- Fabyano Silva

ITN Nematode SystemHealth

- Hamed Rashidi
- Pramod Mathur
- Juan Herrero Medrano
- Panoraia Alexandri

Breed4Food (WUR)

- Han Mulder
- John Bastiaansen
- Liesbeth van der Waaij

Universidade Federal de Viçosa

• Simone Guimaraes

University of Georgia

Ignacy Misztal

Summary

Future needs

- Low in labour
- Easy to manage
- Uniform
- Problem free
- Challenge proof
- Society acceptable

Robustness

- Proper trait selection
- Statistical tools
 - Predictable pigs
 - Social pigs
- Uniformity
- Challenge reactions
- Maintain genetic variation

Thank you for your attention!

