Heat tolerance and farrowing rate in two sow lines

Summary of a PhD project

Saskia Bloemhof, Egbert Knol, Ignacy Misztal, Liesbeth van der Waaij

Background

Globalization of pig breeding programs

Meat production is expected to double

- Latin America
- South and East Asia

FAO, 2006

Temperature is expected to increase worldwide

Temperature sensitivity

Temperature sensitivity

- Above the upper critical temperature (UCT) performance decreases
- Speed of decrease indication of degree of sensitivity

Is that the same across genetic lines?

If not, what is the heritability for heat tolerance?

Data

Yorkshire (D-line) and Large-White sows (I-line)

- D-line mainly selected based on performance in the Netherlands
- I-line selected based on international performance (incl Spain and Brasil)
- Temperature data was available from local weather stations (European Climate Assessment Dataset)
 - Temperature at day of first insemination

Temperature at insemination and farrowing rate

32,631 records from 11,935 sows located in Spain

Progress in Pigs

Temperature at insemination and farrowing rate

VAGENINGEN

WAGENINGEN UR

Line differences?

The D-line and I-line respond differently to temperature above UCT at day of insemination, expressed in farrowing rate

Is this response heritable?

Genetics of temperature sensitivity

93,969 records from 24,456 sows located in Spain/Portugal

AGENINGEN UNIVERSITY

WAGENINGEN UR

Genetic parameters (at 29.3°C)

Farrowing rate	D-line	I-line
h ² level	0.05 _{0.02}	0.08 _{0.01}
h ² slope	0.04 _{0.01}	0.02 _{0.01}
r _g level, slope	0.16 _{0.37}	-0.36 _{0.17}

- 1. More genetic variation for slope in the D-line than in the I-line
- 2. Genetic correlations of opposite sign, but inaccurate

--- observed I --- observed D --- predicted I --- predicted D

Conclusion

- 1. The I-line is more adapted to managing high heat load than the D-line
- 2. There is genetic variation for response to temperatures above UCT, expressed in farrowing rate, in the D-line but less in the I-line
- 3. No clear evidence of genetic correlation between farrowing rate and sensitivity to high temperatures

Some remaining questions

- Where does the genetic variance for temperature sensitivity come from? Why is it larger in the D-line than in the I-line?
- Is the genetic correlation really 0 or do we need more data on high temperature performance?
- Is this model ok to analyse the I-line? Using UCT of the D-line may be suboptimal

Hypothesis

- Assumption was: 19.2 °C for D-line is UCT for both lines
- What if it is not only the slope, but also the start of the slope that indicate sensitivity and genetic correlation between farrowing rate and temperature sens. Not estimable negative:

Acknowledgement

Funding from European Commission under LowInputBreeds, FP7- project No. KBBE 222 632 is acknowledged

PhD defence: Sep 10, 2014 thesis will be online

VAGENINGEN UNIVERSITY

AGENINGEN UR

afterwards

hc aspec

Saskia Bloemho

Snow shoes and sandals?

Genetic aspects of heat stress sensitivity and sow reproduction

Saskia Bloemhof

Temperature at insemination and litter size

Temperature at insemination and litter size

AGENINGE

Adapted from Bloemhof et al., 2008

