Genetic variation in macro- and microenvironmental sensitivity for milk yield in Swedish Holsteins

H. A. Mulder, L. Rönnegård, S. Wijga, W. F. Fikse, R. F. Veerkamp, E. Strandberg

Acknowledgement

- RobustMilk, EU project
- www.robustmilk.eu
- The Swedish Dairy Association (Svensk Mjölk, Stockholm, Sweden)

Introduction

What is macro- and micro-environmental sensitivity?

- Genetics of macro-environmental sensitivity
 - Environmental change is known, e.g. feed, soil, herd
 - Measured as G x E (e.g. rg) or slope of a reaction norm
- Genetics of micro-environmental sensitivity
 - Environmental change is unknown; can be animal specific
 - Measured as difference in environmental variance

Introduction: empirical evidence

Genetic variation in macro-environmental sensitivity

- Genotype by environment interaction
- Many studies have found non-unity genetic correlations
- Significant variance in slope of reaction norm

Genetic variation in micro-environmental sensitivity

- Genetic heterogeneity of environmental variance
 - Hill and Mulder (2010)
- Not much known about relationship between both types of environmental sensitivity

Objective

- To estimate genetic variance in macro- and microenvironmental sensitivity in Swedish Holsteins
- To estimate genetic correlations between macro- and micro-environmental sensitivity
 - Lactation milk yield

Material and Methods

- Swedish Holsteins
- 142,565 first lactation records
 - 305-day milk yield calculated with Test Interval Method
- 762 sires; at least 2 generations of male ancestors were traced back for sires
 - On average 187 daughters per sire

The quantitative genetic model

Combine linear reaction norm with heterogeneous environmental variance

•
$$P = \mu + A_{int} + A_{sl}x + \exp(\sigma_E^2 + 0.5A_v)e$$

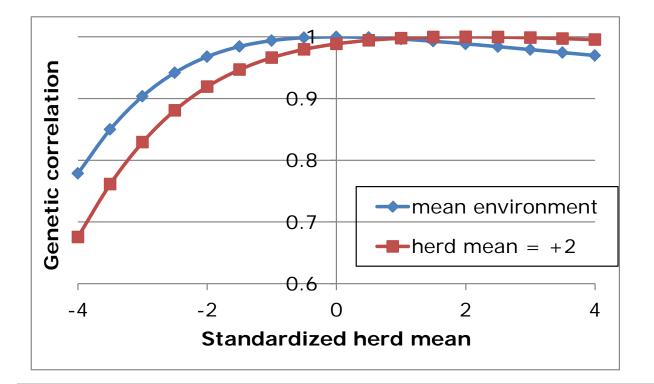
$$\mathbf{G} = \begin{bmatrix} \sigma_{A_{int}}^2 & \sigma_{A_{int},A_{sl}} & \sigma_{A_{int},A_{v}} \\ & \sigma_{A_{sl}}^2 & \sigma_{A_{sl},A_{v}} \\ & & \sigma_{A_{v}}^2 \end{bmatrix}$$

A_{int} = breeding value for intercept
A_{sl} = breeding value for slope of linear reaction norm
A_v = breeding value for environmental variance

AGENINGEN UNIVERSITY Wageningen UR

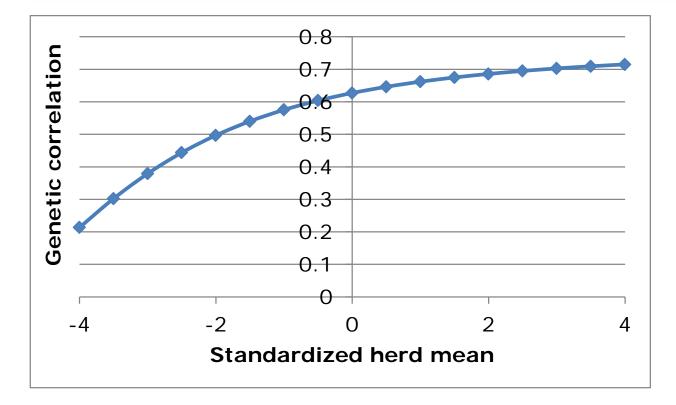
Statistical model

- DHGLM in ASREML (Rönnegård et al., 2010; Felleki et al., 2012)
- Sire model most information comes from half-sibs in different environments (Mulder et al., 2013; GSE 45:23)
- $\mathbf{v} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{s}_{int} + \mathbf{Z}_{x}\mathbf{s}_{sl} + \mathbf{e}$
 - Herd-year mean was used as covariate in reaction norm
- $V(e) = \exp(\mathbf{X}\mathbf{b} + \mathbf{W}\mathbf{h}_{\mathbf{v}} + \mathbf{Z}\mathbf{s}_{\mathbf{v}})$
 - Random herd-year-season effect
- Algorithm iterates between both models until CONVERGENCE WAGENINGEN UNIVERSITY WAGENINGEN UR

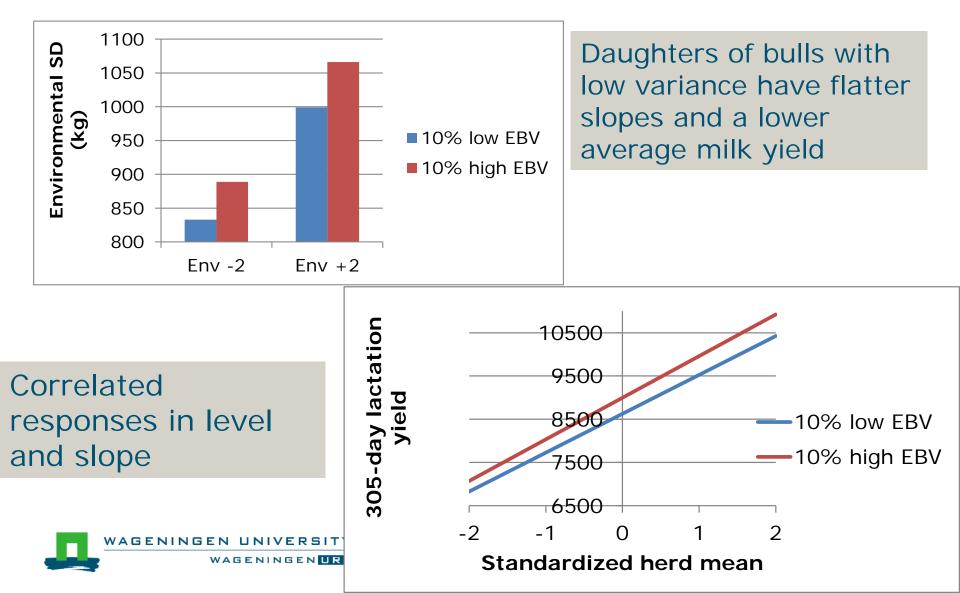

Results

	Estimate	Se
$\sigma_{\!A_{sl}}^2$	11096	2288
$\sigma_{\!A_v}^2$	0.043	0.008
$r_{A_{Aint,Asl}}$	0.808	0.062
r _{AAint,Av}	0.626	0.073
r _{AAsl,Av}	0.765	0.098

Selection on higher level increases the slope and the variance:


' Cows get more sensitive

Genetic correlation between macroenvironments


Genetic correlations mostly > 0.9; not much reranking

WAGENINGEN UNIVERSITY WAGENINGEN UR Genetic correlation between milk yield and micro-environmental sensitivity as a function of environment

Genetic correlation between milk yield and microenvironmental sensitivity is higher in herds with a higher milk yield

Bulls with high versus low variance: expected performance of daughters

Conclusion

Existence of genetic variation in macro- and microenvironmental sensitivity in cows

Macro-environmental and micro-environmental sensitivity are positively correlated for milk yield

- Selection on lower variance results in a flatter slope
- Selection on higher milk yield leads to higher slope and higher variance
 - Cows are more sensitive, but some room for simultaneous improvement of milk yield and environmental sensitivity

AGENINGEN UNIVERSIT

WAGENINGEN <mark>UR</mark>

Thank you for your attention!

Han.Mulder@wur.nl

Conclusion

Existence of genetic variation in macro- and microenvironmental sensitivity in cows

Macro-environmental and micro-environmental sensitivity are positively correlated for milk yield

- Selection on lower variance results in a flatter slope
- Selection on higher milk yield leads to higher slope and higher variance
 - Cows are more sensitive, but some room for simultaneous improvement of milk yield and environmental sensitivity

AGENINGEN UNIVERSIT

WAGENINGEN UR