Genotype imputation accuracy in Holstein Friesian cattle in case of whole-genome sequence data

Rianne van Binsbergen

Marco Bink, Mario Calus, Fred van Eeuwijk, Ben Hayes, Ina Hulsegge, and Roel Veerkamp

Background

Whole-genome sequence data might lead to higher accuracy in GWAS and genomic predictions → Causal mutation is included (*assumption*)

Large dataset is required = expensive

Solution:

- → Sequence core set of individuals (e.g. founders)
- → Impute whole-genome sequence genotypes of other individuals

Objectives

- Investigate *mean* accuracy of imputation from SNP panel genotypes to whole-genome sequence data in Holstein Friesian dairy cattle
- 2. Gain insights in factors affecting accuracy of imputation *per SNP*

1. General approach

1. Scenarios

1. Number of variants on chromosome 1

1. Mean accuracy

Scenario	BovineSNP50	BovineHD
80% animals	0.46	0.83
60% animals	0.43	0.81
40% animals	0.37	0.77

Accuracy of imputation was (too) low

Accuracy of imputation was generally high

1. Two-step approach

1. Mean accuracy

LIVESTOCK RESEARCH

WAGENINGENUR

Scenario	BovineSNP50	BovineHD
80% animals	0.46	0.83
60% animals	0.43	0.81
40% animals	0.37	0.77
Two-step approach	0.65	-
Higher accuracy while less information was used!		

Objectives

- Investigate *mean* accuracy of imputation from SNP panel genotypes to whole-genome sequence data in Holstein Friesian dairy cattle
- 2. Gain insights in factors affecting accuracy of imputation *per SNP*

2. Factors affecting imputation reliability

LD between imputed SNP and nearest SNP on SNP panel

• Distance (c) (Sved, 1971)
$$r_{dist}^{2} = \frac{1}{4*Ne*c+1}$$

• MAF difference (Miller, 2013)
$$r_{dMAF}^{2} = \frac{1-4dMAF}{2dMAF+1}$$

Number of sequenced individuals & MAF of imputed SNP

• Empirical Michaelis-Menten function per scenario

$$r_{MAF}^{2} = \frac{V_{max} * MAF}{K_{m} + MAF}$$

Total predicted imputation reliability = $r_{dist}^2 * r_{dMAF}^2 * r_{MAF}^2$

• Based on SNP in highest LD $(r_{dist}^2 * r_{dMAF}^2)$ of 5 nearest SNPs on SNP chip

2. Distance

Distance to closest SNP on BovineHD (base-pairs)

2. MAF difference

MAF difference

2. MAF & Reference set size

Minor allele frequency

2. Total predicted reliability

Conclusions

- Accuracy of imputation from BovineHD was generally high and for imputation from BovineSNP50 (too) low
 Stepwise imputation improved accuracy
- 2. Poor imputation of sequence data variants (including causal mutation?) if
 - poor LD between imputed SNP and SNP chips
 - Iow MAF of imputed SNP
 - Potentially limits the extra power from using imputed sequence data for GWAS (compared to SNP chips)

Acknowledgements

- 1000 bull genomes project (www.1000bullgenomes.com)
- Breed4Food project (www.breed4food.com)

rianne.vanbinsbergen@wur.nl

