Variance and Covariance of Actual Relationships between Relatives at One Locus 2013 PLoS ONE 8(2):
 e57003. doi:10.1371/journal.pone. 0057003

Luis Alberto Garcia-Cortés, Andrés Legarra, Claude Chevalet, Miguel Angel Toro,

EAAP 2013

Why

Realized relationships =expected relationships + deviations

$$
\begin{aligned}
& r_{34}=\frac{1}{4} \\
& r_{35}=\frac{1}{4} \\
& r_{36}=0 \\
& r_{45}=\frac{1}{2}
\end{aligned}
$$

Some sibs are more equal than others !!

(Invented) Full-sibs example

$A_{i j}$	$G_{i j}$
0.5	0.48
0.5	0.60
0.5	0.25
0.5	0.70
0.5	0.44
0.5	0.53

$$
\operatorname{Var}\left(G_{i j}\right)=\operatorname{Var}\left(G_{i j}-A_{i j}\right)=0.023
$$

Can we compute this variance from pedigree before seeing the markers?

Why

- Increased accuracy of genomic selection relies on using a more accurate \mathbf{G} instead of \mathbf{A}
- But we don't know a priori how much will they differ
- Small errors in A cumulate with generations !!
- How many generations should one use?
- For both questions we need to know the extent of deviations in $\mathbf{E}=\mathbf{G}-\mathbf{A}$

Variation in actual relationship as a consequence of Mendelian sampling and linkage

W.G. HILL ${ }^{1 *}$ and B.S. WEIR ${ }^{2}$

- Only consider two-individual coancestries and not a full pedigree
- Not a general formula but a collection of them
- They consider linkage, we consider one locus
- We provide a general formula for all pairs of individuals in a pedigree

What

Realized relationships $=$ expected relationships + deviations

$$
\mathbf{G}=\mathbf{A}+\mathbf{E}
$$

What is $\operatorname{Var}(\mathbf{E})$?
Let $\mathbf{E}=\left(\begin{array}{llll}\mathbf{e}_{i, 1} & \mathbf{e}_{i, 2} & \ldots & \mathbf{e}_{i, n}\end{array}\right)$

What is $\operatorname{Cov}\left(\begin{array}{c}\mathbf{e}_{:, 1} \\ \mathbf{e}_{:, 2} \\ \cdots \\ \mathbf{e}_{:, n}\end{array}\right)$?

$$
\text { Coancestry }^{\prime} \boldsymbol{\Phi}
$$

$$
\operatorname{Var}(\mathbf{E})=4 \operatorname{Var}(\mathbf{\Phi})
$$

$\Delta_{i}=\mathrm{P}$ probability of identity state S_{i}
Father-son
K. Lunge and J. S. Sinsheimer

$$
\Delta_{8}=1
$$

Full sibs

$$
\begin{aligned}
& \Delta_{7}=1 / 4 \\
& \Delta_{8}=1 / 2 \\
& \Delta_{9}=1 / 4
\end{aligned}
$$

Fig. 1. Condensed identity states.

Coancestry ($=0.5 a_{i j}$) of i and j

$$
\phi_{i j}=\Delta_{1}+\frac{1}{2}\left(\Delta_{3}+\Delta_{5}+\Delta_{7}\right)+1 / 4 \Delta_{8}
$$

$$
\begin{aligned}
& E(i)=\Delta_{i} \\
& \operatorname{Var}(i)=\Delta_{i}\left(1-\Delta_{i}\right) \\
& \operatorname{Cor}(i j)=-\Delta_{i} \Delta_{j}
\end{aligned}
$$

$$
\phi_{i j}=\Delta_{1}+\frac{1}{2}\left(\Delta_{3}+\Delta_{5}+\Delta_{7}\right)+1 / 4 \Delta_{8}
$$

$$
\begin{aligned}
\operatorname{Var}\left(\phi_{i j}\right) & =\operatorname{Var}\left(W^{\prime} \Delta\right) \\
& =W^{\prime} \operatorname{Var}(\Delta) W \\
& =\sum_{i=1}^{a} w_{i}^{2} \Delta_{i}\left(1-\Delta_{i}\right)-2 \sum_{j} \sum_{i j j} w_{i} w_{j} \Delta_{i} \Delta_{j}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(\phi_{i j}\right) & =\sum_{i} w_{i}^{2} \Delta_{i}-\left(\sum_{i} w_{i} \Delta_{i}\right)^{2} \\
& =\phi_{i j, i j}-\left(\phi_{i j}\right)^{2} \longrightarrow \text { Karigl (1981) generalized relationship } 9
\end{aligned}
$$

Covariance

- The covariance is a simple extension:

$$
\operatorname{Cov}\left(\Phi_{A B}, \Phi_{C D}\right)=\phi_{A B, C D}-\phi_{A B} \phi_{C D}
$$

- This means that the $\Phi_{C D}$ is not independent of $\Phi_{A B}$, example:

C and D can not share alleles if A and B do not

Generalized relationships

Karigl's 1981 generalized relationships

$$
\phi_{A B, C D}
$$

is the probability that
two genes drawn from A and B are IBD
and at the same time
two genes drawn from C and D are IBD
Can be computed from pedigree
It will depend on the paths linking all four individuals

Inbreeding of Dash nd

$$
\begin{array}{ll}
F_{D}=0,4297 & V\left(F_{D}\right)=0,2451 \\
\phi_{C S}=0,4297 & V\left(\phi_{C S}\right)=0,0922
\end{array}
$$

Coancestry of parents of Dash and

Extension to several loci

- If there were infinite loci, these variances are divided by ∞ and become 0
- Genome is not infinite, is composed of repetitive "chunks" due to linkage and finite number of animals
- Divide by «Me=equivalent number of loci» (Goddard 2009 and many others)

$$
\operatorname{Cov}\left(\Phi_{A B}, \Phi_{C D}\right)=\frac{1}{M e}\left(\phi_{A B, C D}-\phi_{A B} \phi_{C D}\right)
$$

Does it work?

- H. Wang, I. Misztal et al., in prep, chicken data, >4000 animals
- E=G-A
- empirical var(E) vs. predictions based on pedigree using $\operatorname{Cov}\left(\Phi_{A B}, \Phi_{C D}\right)=\phi_{A B, C D}-\phi_{A B} \phi_{C D}$

$\operatorname{Var}(\mathbf{G}-\mathbf{A})$ vs. our theory

observed vs. expected variance

- Pretty good fit
- From here, number of effective loci ~70

Conclusions

- $\operatorname{Var}(\boldsymbol{E}=\boldsymbol{G}-\boldsymbol{A})$ can be computed from pedigree and a populational parameter (Me)
- Starting point for more developments

Acknowledgments

- project CGL2009-1327-C02-02 of the Ministerio de Ciencia e Innovacion (Spain)
- ANR project Rules \& Tools (France)
- action X-Gen of the SelG en metaprogram (INRA)
- partially supported by the platform bioinformatics Toulouse Midi-Pyrenees
- lagC made the drawings

