

# The adjusted genomic relationships by allele frequencies within breeds and use in single-step

Mahlako Makgahlela<sup>1</sup><sup>2</sup>, Ismo Strandén<sup>1</sup><sup>2</sup>, Ulrik Nielsen<sup>3</sup>, Mikko Sillanpää<sup>4</sup><sup>5</sup> & Esa Mäntysaari<sup>2</sup>

<sup>1</sup>Department of Agricultural Sciences, University of Helsinki, Finland

<sup>2</sup>MTT Agrifood Research Finland, Biotechnology & Food Research, Biometrical Genetics, Finland

<sup>3</sup>Danish Agricultural Advisory Service, Aarhus, Denmark

Departments of Mathematical Science<sup>4</sup>, Biology & Biocenter<sup>5</sup>, University of Oulu, Finland

## GBLUP

- Simple allele frequencies (AF) across breeds are often used to construct genomic relationship matrix (**G**) in multibreeds
- Ignoring differences in AF between breeds may result in distorted coefficients in **G**
- Optimal construction of **G**, and its incorporation with the numerator relationship matrix (**A**) may improve single-

#### step GBLUP in multi-breeds

#### **OBJECTIVES**

- 1. To compare the effect of AF within-breeds ( $G_{WB}$ ) to AF across-breeds ( $G_{AB}$ ) on **G** in an admixed population, and to compare AF estimated from the genotyped *versus* base population
- 2. To compare single-step GBLUP validation reliabilties from  $G_{WB}$  and  $G_{AB}$

#### CONCLUSIONS

- AF within breeds reduced breed differences in **G**, while AF across breeds increased **G** coefficients, markedly for distantly related animals
- $\mathbf{G}_{WB}$  with AF from the base populations was closer to A, which simplified the blending of these matrices
- Validation reliabilities were unaffected by AF used to construct **G**

#### **MATERIALS & METHODS**

• 4,106 bulls (1971-2006) with

#### **Modification of G with AF within breeds**

• Regression of bull genotype on breed proportions was fitted to obtain AF

4,100 build (19/1 2000) with

genotypes for 38,194 informative markers

- Deregressed proofs (DRP) for 2,816,745 cows
- Pedigree (n=4,624,453), used to estimate bulls' breed proportions

•  $G_{WB} = ZZ'/m, Z_{i,j} \iff (u_{ij}-2p_{ij})/sqrt(2p_{ij}(1-p_{ij})),$ 

*m* is the No. of markers;  $u_{ij}$  is 0, 1 or 2 copies of the 2<sup>nd</sup> allele and  $p_{ij}$  is expected mean AF

#### **Single-step GBLUP**

- Cow DRP were fitted as data, weighted by their effective record number
- A unified matrix combined **G** (i.e.,  $\mathbf{G}_{AB}$  or  $\mathbf{G}_{BW}$ ) and **A**
- Results were compared using Interbull GEBV validation test on young bulls

### RESULTS

- Diagonal elements were smaller with  $\mathbf{G}_{WB}$  versus  $\mathbf{G}_{AB}$
- $\mathbf{G}_{WB}$  coefficients were similar within and across breeds
- $G_{WB}$  was more correlated (36%) with A than  $G_{AB}$  (16%) using AF from the base populations
- Reliabilities were 1-2% higher with  $\mathbf{G}_{AB}$  than  $\mathbf{G}_{WB}$



Validation reliabilities ( $R_{BV}^2$ ) and regression coefficients ( $b_1$ ) of breeding values



Milk Method Protein  $R^{2}_{BV}$  $R^{2}_{BV}$ b1 **b**1 **Genotyped AF G**<sub>AB</sub> 0.77 0.37 0.90 0.40 **G**<sub>WB</sub> 0.88 0.36 0.75 0.39 **Base AF** 0.86 **G**<sub>AB</sub> 0.76 0.37 0.40 **G**<sub>WB</sub> 0.78 0.38 0.36 0.72

Fig. 1 Distributions of diagonal elements with allele frequencies (AF) estimated from the genotyped population

Fig. 2 Distributions of diagonal elements with allele frequencies (AF) estimated from the base population

Reference: Makgahlela et al. (2013) J. Dairy Sci. 96:5364-5375