

ACCURACY OF GENOMIC PREDICTIONS IN BEEF CATTLE WITH MEDIUM AND HIGH-DENSITY SNP PANELS

M. GUNIA¹, R. SAINTILAN², M-N. FOUILLOUX³, E. VENOT¹, F. PHOCAS¹

INTRODUCTION

- Which accuracy can be reached for genomic predictions in French Charolais beef cattle according to :
 - markers density (54 K vs 777 K genotypes)
 - \blacktriangleright statistical model (GBLUP vs Bayes C π)?

RESULTS

Accuracy for GBLUP predictions*

Training set	Youngest	Oldest	All animals	
Number of SNP	777 K			54 K
Birth weight	0.36	0.25	0.33	0.40
Birth condition	0.11	0.21	0.25	0.21
Weaning weight	0.36	0.32	0.42	0.45
Muscular development	0.22	0.17	0.34	0.38
Skeletal development	0.20	0.14	0.26	0.31
Average accuracy	0.25	0.22	0.32	0.35

• What is the gain in accuracy when doubling the training set of the reference population?

MATERIALS AND METHODS Data

- 777K genotypes for 664 bulls (Illumina Beadchip)
- 54K genotypes for 2 018 bulls and cows
- 777K imputed genotypes from 54K ones with Beagle
- Estimated Breeding values (EBV) and their accuracies from a BLUP-animal model for birth and weaning traits recorded in French Charolais selection nucleus

=> total number of animals: 2 682

Reference population and tested scenarii

Accuracy for Bayes Cπ predictions*

Training set	Youngest	Oldest	All a	nimals
Number of SNP	7	77 K		54 K
Birth weight	0.37	0.35	0.42	0.36
Birth condition	0.15	0.32	0.34	0.29
Weaning weight	0.37	0.35	0.45	0.43
Muscular development	0.37	0.41	0.52	0.55
Skeletal development	0.17	0.22	0.27	0.25
Average accuracy	0.28	0.33	0.40	0.37

Number of animals and average kinship coefficient

- 3 different training sets: All animals, 50% Oldest, 50% Youngest
- **Statistical methods**

*Standard-deviation of 0.04 for all traits

CONCLUSION

- Highest accuracy observed for Bayes Cπ with 777K
- Increasing marker density
 - improves accuracy obtained with Bayes $C\pi$
 - decreases accuracy obtained with GBLUP
- Doubling the size of the training set
 - Increases the average accuracy by 20% to 48%

- Performances : weighted deregressed EBV (DEBV)
- Model : Genomic Values (GV) estimated by GBLUP or Bayes $C\pi$ (GS3 software)
- Accuracy = Correlation (GV, DEBV)/ $\sqrt{h^2}$ estimated for the validation population

www.inra.fr

le réseau de la génétique animale

¹ INRA, UMR 1313 GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France ² UNCEIA, 149 Rue de Bercy, F-75595 Paris, France ³ Institut de l'Elevage, 149 Rue de Bercy, F- 75595 Paris, France

APIS-GENE

Poster 17517