
Pre-natal maternal effects on offspring lactation performance

A.M. Paten, N. Lopez-Villalobos, P.R. Kenyon, D.S. van der Linden, A.M. Adiletta, S.W. Peterson, C.M.C. Jenkinson, S.J. Pain & H.T. Blair

INTERNATIONAL SHEEPRESEARCH CENTRE

Te Kunenga

ki Pūrehuroa

 Growing body of evidence demonstrating that manipulation of the maternal environment during gestation can alter foetal development

"Foetal programming"

Applications for animal production

Our group was interested in how "Foetal Programming" could be applied in an animal production context

Foetal programming and agriculture

- Firstly; we need evidence that there are actual foetal programming effects in agriculture
- Secondly; if there are effects, are they large enough to have an economic impact?
- Thirdly; can we find the underlying mechanism?
- Fourthly; can we control the effect to consistently achieve the desired outcome?

MASSEY

Our question...

Can the maternal environment affect the lactational performance of the offspring?

Studies designed to investigate the effect of dam nutrition on mammary gland development and milk production of offspring

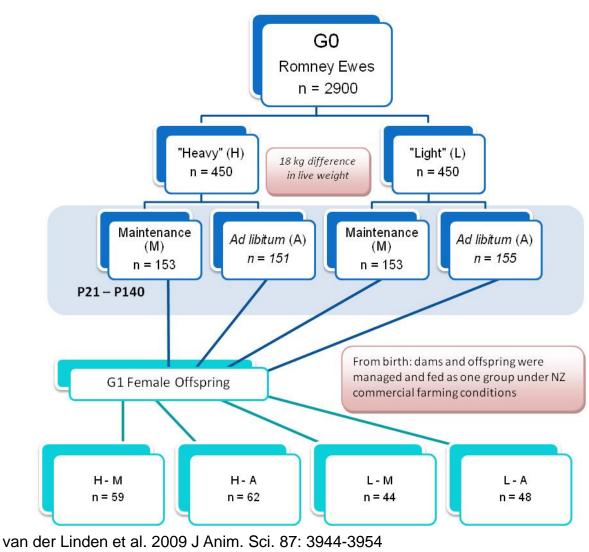
- Study 1 (2003) Effect of dam gestational nutrition on foetal mammary gland
- Study 2 (2005) Effect of dam size and gestational nutrition on foetal mammary gland and adult offspring lactation performance
- Study 3 (2009) Effect of dam nutrition during early and mid-to-late
 pregnancy on adult offspring mammary gland and lactation performance

Forever discovering

Study 1 (2003) - overview

Objective:

To examine effects of maternal nutrition during pregnancy on foetal mammary gland development


Findings: Development of foetal mammary gland affected

• 1.5

Study 2 (2005) – study design

Objectives:

Investigate effects of maternal nutrition during pregnancy on offspring mammary gland development <u>and</u> lactational performance

Additional paradigm of dam size added

Te Kunenga ki Pūrehuroa

Blair . 2010 J Anim. Sci. 88:E40-E50

Study 2 - findings

- **G1 Foetal mammary glands** Dam nutrition affected weight: M > A
- Dam size affected duct area: H > L
- **G1 First lactation performance** Milk yields and composition affected by: Dam nutrition: M > A
- Dam size: H > L
- **G2 Lamb live weights and growth** Lamb weaning weights affected by: Dam nutrition: M > A
- Dam size: H > L

Do effects persist?

A cohort of lambs was retained to investigate performance traits over 5 years (2007 – 2011)

- Growth
- Reproductive performance
- Lactational performance
- Lambing performance
- Growth performance of 2nd generation offspring

Study 2 – results (5 years)

Effect of dam size and nutrition on offspring ave. live weight and body condition scores

	Live weight (kg)					Body condition score						
Treatments	Bree	ding	La pregr			ing of nbs	Bre	eding	La pregr			ning of nbs
Dam nutrition									·			
Μ	68.1	0.84	76.6	0.87	64.3	0.72	3.0	0.06	2.3	0.05	2.2	0.04
Ad	70.3	0.90	77.9	0.92	65.4	0.77	2.9	0.06	2.3	0.05	2.1	0.04
value	0.07		0.35		0.31		0.23		0.30		0.30)
Dam size												
Lt	68.6	0.89	76.6	0.89	64.1	0.77	3.0	0.06	2.3	0.05	2.2	0.04
Hv	69.8	0.78	78.3	0.86	66.3	0.73	3.0	0.05	2.3	0.04	2.1	0.04
value	0.30		0.21		0.08		0.51	•	0.40		0.40)

No significant interaction between dam size and age

Forever discovering

Effect of dam size and nutrition on offspring ave. accumulated milk yields (kg milk/42 days)

	Dam	Size		Dam nutritio	ר (P	21 – 140)	
	Heavy	Light		Maintenance			
2007	114.4 œ2.01	108.4 œ2.60	0.07	115.1 œ2.46 ^b	1()7.7 œ2.24ª	0.03
2008	102.2 œ2.01	101.0 œ2.41	0.69	99.9 œ2.24	1	03.3 œ2.52	0.36
2009	124.3 œ3.33	117.7 œ3.45	0.17	119.0 œ3.29	1	22.7 œ3.55	0.19
2010	109.2 œ3.75	106.4 œ3.48	0.59	105.7 œ3.34	1	10.7 œ3.70	0.32
2011	138.5 œ3.31	131.0 œ3.90	0.15	134.2 œ3.42	1	35.7 œ3.42	0.45
All years	117.8 œ1.24 ^b	112.6 œ1.39ª	0.01	114.6 œ1.54	1	15.5 œ1.35	0.76
No significant ir	No significant interaction between dam size and age in any years						3

Te Kunenga ki Pūrehuroa

MASSEY UNIVERSITY

Effect of granddam size and nutrition on grandoffspring ave. live weights

			Combined lamb LWG
	Combined lamb	Combined lamb Combined lamb	
Treatments	LW at birth (kg)	LW at birth (kg) LW at weaning (kg)	
Granddam nutrition			
Μ	9.7 0.12	55.6 0.51	509.1 5.18
Ad	9.6 0.13	55.2 0.54	506.9 5.48
value	0.29	0.59	0.76
Granddam size			
Lt	9.6 0.13	54.9 0.55	504.2 5.66
Hv	9.7 0.11	55.9 0.50	511.7 5.07
value	0.63	0.19	0.32

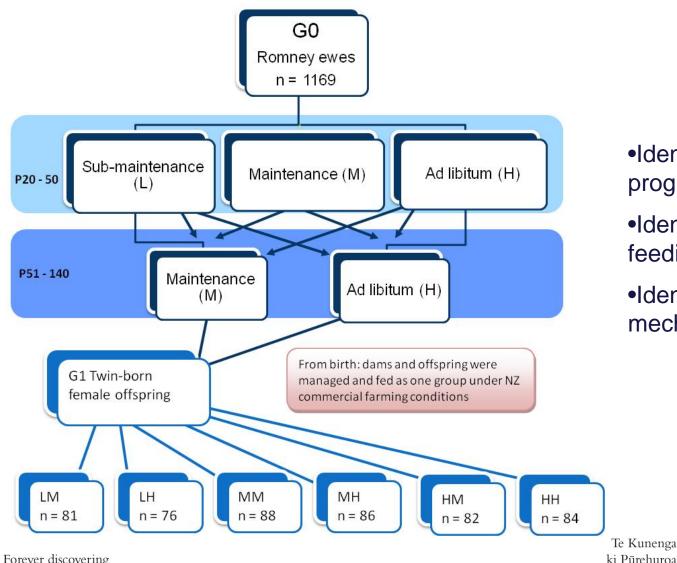
No significant interaction between dam size and age

Study 2 – summary of findings

- Dam size and nutrition affects development of the foetal mammary gland
- This translates to a milk production difference in 1st lactation
- Effects of dam nutrition do not persist, or lead to long-term production advantage
- Ewes born to heavier dams have increased milk production which persists, but does not result in heavier weaned lambs

Are the effects enough to have an economic advantage? At this stage we would have to suggest not

However:


Can we find the mechanisms underlying 1st lactational differences and manipulate them to achieve a long-term advantage?

Study 3 (current study)...

Study 3 (2009) – study design

 Identify critical programming periods

 Identify optimal maternal feeding conditions

 Identify potential mechanisms

Te Kunenga

MASSEY UNIVERSITY

Forever discovering

Study 3 - foetal findings

Foetal mammary glands

Weight at foetal D140

- Dam nutrition during P21 50: L < M & H
- Dam nutrition during P50 140: NS

Suggests early pregnancy as a critical window for programming of the foetal mammary gland from maternal gestational nutrition

Te Kunenga

ki Pūrehuroa

Lactational performance

Effect of dam nutrition during early (P21-50) and mid-to-late (P50-140) pregnancy on offspring accumulated milk and components yields (50-d lact. Period) during 1st lactation

	Dam nutrition treatment									
	P21-50						P50-140			
Trait	Sm	Μ	Ad	SEM	P value	М	Ad	SEM	P value	
Milk yield, kg	122.6	133.7	122.5	4.07	0.10	122.3	130.3	3.31	0.10	
Lactose yield, kg	6.3	6.9	6.3	0.21	0.12	6.3	6.7	0.17	0.09	
CP yield, kg	5.9	6.3	6.0	0.17	0.21	5.9	6.2	0.13	0.19	
Fat yield, kg	8.0	9.3	8.6	0.38	0.07	8.5	8.8	0.31	0.42	
NE yield, MJ	546.2	613.8	561.8	20.13	0.06	562.1	585.8	16.33	0.32	
No significant interaction between dam nutrition during P21-50 and P50-140 Forever discovering Paten . 2013 J Anim. Sci. 91: 676-684						Te Kune ki Pūreh		SSEY UN	IVERSITY	

Study 3 - grandoffspring

Effect of granddam nutrition during early (P21-50) and mid-to-late (P50-140) pregnancy on live weight (LW) and growth of grandoffspring from birth to weaning

	Granddam nutrition treatment								
		P21-		P50-140					
Grandoffspring trait	Sm	Μ	Ad	SEM	М	Ad	SEM		
Birth weight, kg	4.7	4.7	4.7	0.12	4.7	4.7	0.10		
LW at weaning, kg	27 .3 ^a	27.1 ^{ab}	25.2 ^b	0.74	26.2	26.8	0.60		
Growth rate to weaning, g/d	224.5	221.3	208.5	6.79	213.3	223.0	5.53		

No significant interaction between granddam nutrition during P21-50 and P50-140

Te Kunenga

ki Pūrehuroa

Paten . 2013 J Anim. Sci. 91: 676-684

Study 3 – summary of findings

- Dam nutrition during early pregnancy is 'critical period'
- Sub-maintenance and ad libitum nutrition detrimental to offspring 1st lactational performance
- Potential intergenerational effect on grandoffspring growth

Study 3 - Mechanisms?

...but what are the underlying mechanisms?

Gene expression differences?

- Mammary gland biopsies of adult ewe offspring
 - Late pregnancy
 - Early-mid lactation

Altered endocrine and/or metabolic profiles?

- Blood serum and plasma collection
 - Late pregnancy
 - Early-mid lactation

Study 3 – Mammary transcriptome

- Many genes involved in milk production
- Examine whole scale gene expression differences in adult offspring mammary gland tissue (biopsied in late pregnancy and lactation)
- RNAseq, RPKM analysis, FDR P value < 0.05, fold difference < 1.5
- Compare gene expression differences between dam early pregnancy nutrition treatments
- Examine molecular pathways

Study 3 – Mammary transcriptome

Late Total no.		Gene ontology				
pregnancy	dif. exp. genes	Of interest				
H vs M	45	Replication fork Cell cycle checkpoint Regulation of cell cycle arrest Chromosome (M)				
H vs L	16	Cell membrane (H)				
M vs L	19	Extracellular (L)				
Lactation						
H vs M	1	Galactose metabolism (M)				
H vs L	-	-				
M vs L	2	Galactose metabolism (M)				
O						

- Study 3 offspring milked in 2nd lactation no difference.
- Currently 3rd lactation additional pregnancy nutrition treatments applied to offspring (milk production)
- Mammary gland and liver biopsies (gene expression)
- Bloods analyses (endocrine and metabolites)
- Histology and immunohistochemistry (cell numbers)
- Currently grandoffspring 1st lactation (milk production)
- Great grandoffspring growth

Summary of studies

- Dam size has lasting effects on offspring milk production but no effect on grand-offspring growth
 - Potential genetic effect increased feed utilisation efficiency
- Maternal nutrition (particularly during early pregnancy) affects first lactation performance of offspring but does not persist
 - Little difference in LW and BCS
 - Mammogenesis in late pregnancy appears to be affected (secretory cell number)
 - Possibly also cell activity in lactation

Acknowledgments

Sheep research group

Prof. Paul Kenyon

Dr Sarah Pain

Dr Sam Peterson

Prof. Hugh Blair

A/Prof. Nicolas Lopez-villalobos

Maria Loureiro

Asmad Kari

April Adiletta Danni van der Linden

Ave. milk composition yields

Effect of dam size and nutrition on offspring ave. accumulated lactose yields (kg)

	Dam	size		Dam nutrition	(P21 – 140)	
	Heavy	Light		Maintenance		
2007	6.0 œ0.11	5.7 œ0.14	0.03	6.1 œ0.13	5.6 œ0.17	0.01
2008	5.3 œ0.11	5.3 œ0.13	0.75	5.2 œ0.12	5.4 œ0.14	0.26
2009	6.7 œ0.18	6.3 œ0.19	0.13	6.3 œ0.21	6.7 œ0.22	0.22
2010	5.7 œ0.23	5.4 œ0.21	0.39	5.4 œ0.22	5.7 œ0.25	0.45
2011	7.3 œ0.18	6.9 œ0.21	0.16	7.0 œ0.21	7.2 œ0.22	0.60
All years	6.2 œ0.08 ^b	5.9 œ0.09ª	0.01	6.0 œ0.08	6.0 œ0.09	0.95
No significant int	teraction between dam	n size and age in any ye	ars		**************************************	

Forever discovering

Te Kunenga ki Pūrehuroa

MASSEY UNIVERSITY

Ave. milk composition yields

Effect of dam size and nutrition on offspring ave. Accumulated milk composition yields

-	Milk components						
Treatments	CPY, kg	TPY, kg	CY, kg	FY, kg	NEY, MJ		
Dam nutrition							
Μ	5.7 0.08	5.2 0.07	4.5 0.06	8.2 0.15	539.2 7.81		
Ad	5.6 0.08	5.2 0.08	4.5 0.06	8.3 0.16	540.0 8.28		
value	0.64	0.63	0.66	0.87	0.94		
Dam size							
Lt	5.5 0.08ª	5.1 0.07	4.4 0.06	8.2 0.16	535.3 8.12		
Hv	5.7 0.07 ^b	5.3 0.07	4.6 0.06	8.2 0.14	543.9 724		
value	0.04	0.06	0.06	0.98	0.43		

No significant interaction between dam size and age