French sheep-for-meat production: state of the art and perspectives for sustainable farming systems.

Sneessens I.^{1, 2, 3}, Brunschwig G.^{2, 1}, Benoit M.^{1, 2}

1 : INRA, UMR1213, F-63122 Saint-Genès-Champanelle

2 : Clermont University, VetAgro Sup, UMR1213, BP 10448, F-63000 Clermont-Ferrand

3 : French Environment and Energy Management Agency (ADEME), 20 avenue du Grésillé - BP 90406 F-49004 Angers Cedex 01

Referee of ADEME: Trevisiol A. - Service of Agriculture and Forest

Over the last 30 years, French sheep-for meat production \searrow by 50%

Nowadays, self-sufficiency of 50 %

Remaining production systems are

- still below international competitivness
- threatened by future economic and climatic contexts
- Pointed out for some of their environmental impacts

To maintain French Sheep-for-meat production systems, it's clearly needed **to identify** what systems can face actual and future challenges

Montmorrillon

Evolution analysis of french sheep-for-meat production systems in plainland areas

Identification of drivers & Expected evolutions

Defining objectives for sustainable farming systems

→ Systems with low labour and inputs needs

(JEAN, 1986)

(JEAN, 1986)

More liberal CAP led to

- \rightarrow a rise in imports of sheep meat: 20 \rightarrow 50 % of national selfsufficiency
- → A decrease of domestic prices of 40% (Benoit and al., 1991)
- → Specialized intensive sheep systems are no longer competitive

Other characteristics of evolution (1987 – 2010)

- Total Agricultural Area: + 66% (90 → 150 ha)
- − Number of ewes : + 42% (480 → 680 ewes)
- Labour productivity: + 35 % equLU/worker

(sample of 12-25 farms, INRA network)

Evolution of farming systems – **Drivers** - Objectives

SCALE ECONOMIES:

cost advantages that enterprises obtain due to a higher size of production, <u>because</u> cost per unit of output decreased as fixed costs are spread out over more units of output.

SCOPE ECONOMIES:

cost advantages that enterprises obtain due to the production of two or more inputs simultaneously.

 \Rightarrow Determine the best production set for a given economic context

Labour income is lower in sheep farming systems

Constant Euros 2012

Evolution of farming systems – **Drivers** - Objectives

Case of French Sheep-for-meat production:

Profitability mainly determined by:

- High numerical productivity
- Low consumption of concentrates

➔ Increasing of input prices expected

Subsidies per worker are higher than income

Evolution of farming systems – Drivers - Objectives

PROFITABILITY

High and constant in presence of

- Climatic and economic hazards
- Higher input prices on the long term

ENVIRONMENTAL FRIENDLY

- Lower GHG emissions, Mj consumption
 - Higher biodiversity
 - Lower pollutions

VIVABILITY

GHG Emissions decrease with higher numerical productivity

(INRA Network , 1180 farms -24 years)

Preservation of sheep-for-meat production systems is questioned in plainland areas.

This production can be seen as a tool to enhance **sustainability** of crop farming systems

BUT

- Crop Livestock Integration → Need for a better understanding
- Sustainability → Which compromise between objectives?

Thanks to our financial supports, the French National Institute for Agricultural Research (INRA-Phase/SAE2) and the French Environment and Energy Management Agency (ADEME).

