

Development of Infrared reflectance spectroscopy databases for efficient livestock management

Decruyenaere V.¹, Boval M.², Dardenne P¹, Gengler N³, Lecomte Ph.⁴

Walloon Agricultural Research Centre (CRAW), 5030 Gembloux, BELGIUM

2 Tropical Animal Production Unit (URZ), INRA French West Indies, Domaine Duclos, 97170 Guadeloupe, FRANCE,

3 ULg, Gembloux Agro-Bio Tech, 5030 Gembloux, BELGIUM.

4 CIRAD, UMR SELMET, 34398 Montpellier – France.

Walloon Agricultural Research Centre Productions and Sectors Department www.cra.wallonie.be

Context

- ✓ Strong expectance towards livestock for high quality products and services but with limited environmental impacts.
- ✓ Consumer expectation for grazing systems is high.
- ✓ Needs of rapid and low cost methods able to characterize various organic substrates and to provide useful informations for Decision Support Tools (DST)

✓ Needs of DST to achieve:

- better livestock management and to obtain high food production (quality and quantity)
- the evaluation of environmental pressure (greenhouse gazes...) at farm and regional scales;
- o the monitoring of various elements as nitrogen

Why IRS databases can be used for DST?

Availability and diversity of IRS databases

coupled with classical reference measurements

• Tropical and temperate forages :

- o CP, fibres...
- Species composition, morphological composition...
- o Digestibility
- *Diet ingredients* : CP, starch, fat...
- Faeces :
 - CP, fibres, ash...

• In situ parameters as intake, digestibility, composition of intake...

• *Milk* :

- Protein, fat, fatty acids...
- Methane emission...
- Other organic substrates....

Real progress in development of chemometric models

How IRS databases can be used for DST?

Building global merged databases that encompas a maximum of variability (production area, species...)

Use appropriate chemometric models for estimating the parameter of interest

Example : Faecal NIRS database (temperate + tropical forages, goats + sheep + cattle faeces) with 2 models (**MPLS** *vs.* **SVM**).

3 Examples of potentials of IRS databases

To predict digestible organic matter intake (DOMI) and estimate animal performances (ADG, milk), livestock environmental impact (CH_4 emission) in temperate or tropical contexts

Diet characteristics and grazing animal performances.

V. Decruyenaere, unpublished data

NIRS applied to faeces and forage as indicator of grazing ADG

- Mixed grazing trials (sheep and heifers), temperate pasture
 White clover Rye grass based pasture
- FNIRS database → estimation of *in situ heifers* diet characteristics
- Forage NIRS database → estimation of grass quality
 31 ¬

Estimation of methane emission by grazing cattle.

M. Boval¹ and V. Blanfort², unpublished data

¹ Tropical Animal Production Unit (URZ), INRA Centre West-Indies-Guyane, Domaine Duclos, 97170 Guadeloupe, FRANCE ² CIRAD, UMR Selmet, Kourou, French Guyana

Mobilisation of FNIRS to estimate CH₄ emission at grazing

- FNIRS database → estimation of *in situ* diet characteristics (OMD and OMI)
- Digestible organic matter intake (DOMI, g/kg LW) estimation
 - Young Bos indicus cattle (400 kg LW)

FNIRS = convenient approach to estimate intake and CH₄ emission in grazing cattle in farm conditions

Improvement of a method to predict individual enteric methane emission of cows from milk MIR spectra.

A. Vanlierde¹, F. Dehareng¹, E. Froidmont¹, N. Gengler², H. Soyeurt², P. B. Kandel², S. McParland³, E. Lewis³, M. Deighton³ and P. Dardenne¹

¹ Walloon Agricultural Research Centre, BE

² University of Liège, Gembloux Agro-Bio Tech, BE

³ Animal and Grassland Research & Innovation Centre, Moorepark, IRL

Milk MIR analyses to estimate CH₄ emission

• Relation between MIR spectra of milk and enteric CH₄ emission

- Reference method for CH_4 (SF₆)
- Maximal variation of enteric CH₄ emission in exp. conditions (diet, cows...)
- Larger scale studies more accurate relation milk vs enteric CH₄mission

Building a global database...

- Integrating a maximum of variability linked to
 - Cows
 - Diets, herd managements
 - Regions

• Example of mixed database : Ireland and Belgium MIR milk spectra

Parameter	Ν	R ² c	R ² cv	SECV
$g CH_4/day$	452	0.76	0.70	62

For which use?

Valorisation of milk MIR spectra (from dairy control) for genetic selection (cows with lower enteric emission), for diet management (feedback in farms directly).

To conclude...

- Through these examples, potential of IRS databases for the development of effective DST appears promising, both in tropical and temperate area.
- Development of large merged databases associated with appropriate chemometric models is a key point to generate predictive regressions
 - → from general calibrations using large heterogeneous data sets
 - → from local calibrations, using a specific appropriate set of data