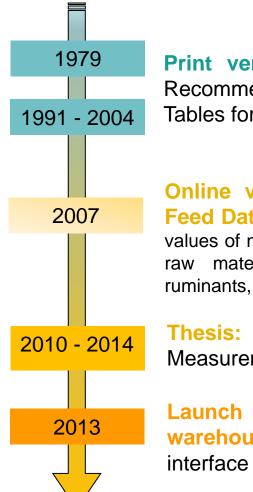


Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER Agroscope

ETH Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich


The Swiss feed database a GIS-based analysis platform

A. Bracher^a, P. Schlegel^a, M. Böhlen^b, F. Cafagna^b, and A. Taliun^b

^a Research Station Agroscope Liebefeld-Posieux, Switzerland ^b University of Zürich, Department of Informatics, Switzerland

Milestones

Print versions of the Feeding Recommendations and Feed Tables for Ruminants and Pigs

Online version of the Swiss Feed Database: Reference mean values of nutrients for more than 600 raw materials and roughage for ruminants, pigs, horses and poultry

Aliment	[g/kg [MS]	[g/kg MS]	[g/kg MS]	[g/kg MS]	ADF [g/kg MS]	[g/kg MS]	
A¥	A.Y	**	**	**		**	
G prairie riche en graminées, autres que ray-grass, stade 4, sec	123.0	35.0	278.0	514.0	312.0	86.0	
G prairie riche en graminées, autres que ray-grass, stade 5, sec	101.0	35.0	315.0	578.0	346.0	83.0	
GR prairie riche en graminées, surtout en ray-grass. stade 3, sec	134.0	35.0	239.0	441.0	269.0	128.0	
GR prairie riche en graminées, surtout en ray-grass, stade 4, sec	119.0	35.0	253.0	466.0	285.0	124.0	
E prairie équilibrée, stade 3, sec	146.0	35.0	238.0	430.0	276.0	89.0	

Thesis: Managing Time-Varying Measurement Sets in Databases

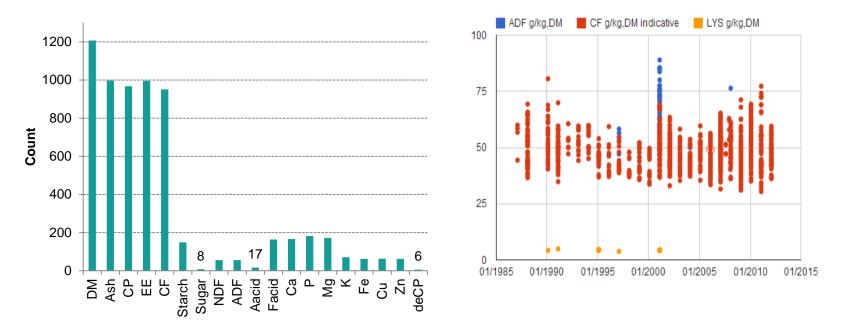
Launch of the temporal data warehouse: interactive web interface enriched with visual tools

Data sources

Research and Surveys: Agroscope, ETH, HAFL

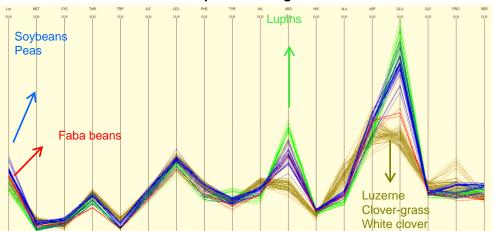
Feeding trials

Conservation


Plant breeding

- Farms, Feed industry: yearly hay survey, raw materials
- Nutritional coefficients from literature and institutions (INRA, CVB, DLG, ARC, NRC)

Data curation


Main challenge: Data incomplete and irregular in time, origin and analyzed nutrients

Abundant proximate analysis, sparse fiber fractions, amino acids, trace elements Aggregated nutrients need to be balanced for coherence and representativeness

Imputation of aggregated nutrients

Amino acid profiles of legume seeds

NDF = 2.1003x + 24.439600 $R^2 = 0.3516$ SBP silage 550 500 450 **MO** 400 350 300 NDF ADF **Reg NDF** 250 200 **Reg ADF** ADF = 0.9014x + 54.742 150 $R^2 = 0.8206$ 100 230 250 170 190 210 CF g/kg DM

Pre-condition:

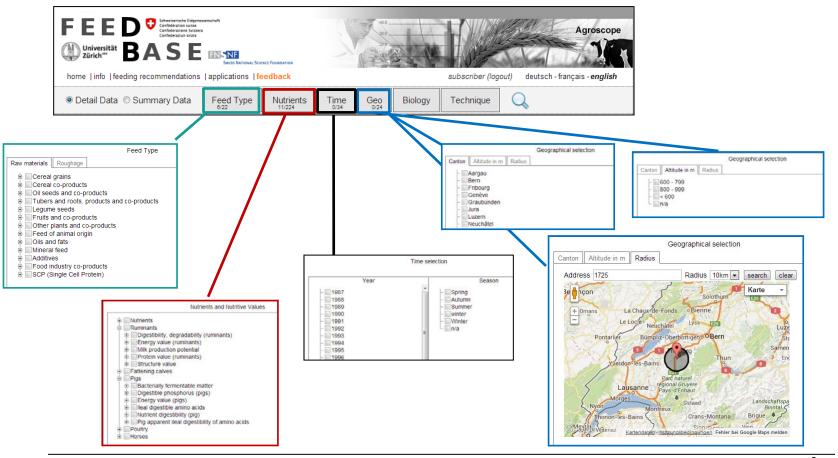
characteristic, multivariate pattern (profile) → fingerprint Example:

Quantification of amino acids based on the **amino acid profile** (g AA/g CP)

Lys g/kg = [avg g Lys/g CP] * CP

Pre-condition:

Correlated nutrients \rightarrow regression Example:


Regression technique to adjust mostly fiber fractions to the mean crude fiber content. High and rather low correlations co-exist.

ADF g/kg DM = 0.9014 * CF + 54.742 (SBP silage)

Interactive web application: query concept

Search parameters for summary data or detail data

- organized into a row of buttons, each button one search category
- an overlay window displays search options by a list, tree or map
- are loaded dynamically based on the already chosen options

EAAP Annual Meeting, August 26th – 30th 2013 Nantes, France

Annelies.Bracher@agroscope.admin.ch

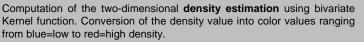
Result views: Summary Data

Curated, aggregated nutrients on a dry matter or as fed basis, with export function

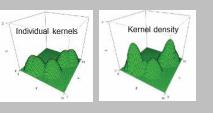
	Universität Zürich*** BASE	SWISS NATIONA	L SCIENCE FOUNDATIO	2N	- G		100	Where a	Jak-		41		
hor	me info feeding recommendations ap	plications	feedbac	(sul	oscriber (logo	o <i>ut)</i> deuts	ch - français	- english		
0	Detail Data Summary Data F	eed Type	Nutri	ients T					Q. 4): J			
		DM	ОМ	Ash	СР	EE	CF	NfE	Ca	Р	Fe 🔺		
L.	and here field here fels here) (let	g/kg g	J/kg,DM	g/kg,DM	g/kg,DM	g/kg,DM	g/kg,DM	g/kg,DM	g/kg,DM	g/kg,DM	mg/kg,D		
	orse bean {field bean, faba bean} (lat. cia faba)	870	958.865	41.135	295.999	17.769	94.84	550.3	1.6	7.21	58.		
23 La	rd	995	1000	0	0	1000	0	0	0	0			
	nseed oil	1000	1000	0	0		0	0	0	0			
25 Lu	pin seed, blue (lat. Lupinus angustifolius)	870	966.57	33.43	358.69	67.34	152.36	388.2	2.325	4.708	39.		
26 Lu	pin seed, white (lat. Lupinus albus)	870	960.21	39.79	396.09	94.05	126.75	343.	a click	into o n	utrient fie	hd	
27 Ma	aize feed flour	880	966	34	116	75	58	71					
28 Ma	aize flakes	890	990.39	9.61	89.735	29.645	15.633	855			dow with	n l	
29 Ma	aize kernel silage	650	986.04	13.96	91.392	44.373	18.887	831	additio	nal info	mation		
30 Ma	aize starch	890	999	1	4.3	3	2	989.7	0.2	0.2	4.		
31 Ma	aize, grains {Corn}(lat. Zea mays)	870	985.027	14.973	96.343	47.163	19.294	822.2	0.04217	1 3.266	18		
32 Mi	lling by-product mixture	870	949.8	50.2	179.395	51.421	81.14	637.9	1	17 07	131.		
33 O a	at feed meal	900	970	30	146	76	71	677	0.65	+.869	63.		
34 O a	ats flakes (lat. Avena sativa)	890	978.42	21.58	151.39	70.54	14.19	742.3	0.51771	6 477	00		
35 O a	ats grains, dehulled (lat. Avena sativa)	870	973.59	26.41	134.482	54.301	89.224	695.6	1.05	Feed:		Maize, grains	[Com](lat. Zea
36 O a	ats, grains (lat. Avena sativa)	870	970.559	29.441	119.413	50.386	118.784	682	0.81649	, eeg.		mays)	
	utgrowth wheat grains (lat. Triticum stivum)	870	981.77	18.23	147.75	16.554	22.288	795.2	0.45272	Parame	eter name:	Phosphorous	
38 Pa	alm oil (lat. Elaeis guineensis)	999	1000	0	0	1000	0	0	0	Formul	2 0.	native	
39 Pe	ea, seeds (lat. Pisum sativum ssp)	870	966.52	33.48	227.584	19.12	64.214	655.6	0.92958	Not rou	nded value.	3.2663	
40 Pe	anut oil {ground-nut oil}	1000	1000	0	0	1000	0	0	0	Author	s Notes:	3.200 Median	
41 Po	otato peelings	150	944	56	110	7	47	780	2.4		A		
42 Po	otato protein	900	963.33	36.67	833.51	24.662	4.921	100.2	1.11	Modifie	ation date:	30.5.2013	
43 Po	otato starch	830	996.03	3.97	2.032	1.519	2.397	990.1	0.2	Numbe	r of values:	60	
44 Ra	apeseed oil	1000	1000	0	0	1000	0	0	0	Standa	rd		
•		11								deviati		0.28	

Result views: geo-referenced Detail Data

Query results displayed in 3 interacting windows: map, chart (+statistic), sortable list

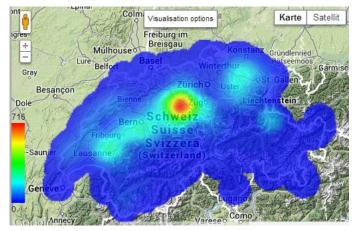

Query result based on the hay survey

Visualization options: Google Maps, Kernel density function


Latitude and longitude of individual samples based on zip code

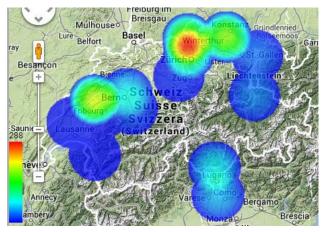
Limited visual possibilities with markers

 $\hat{f}_{h}(x,y) = \frac{1}{nh^{2}} \sum_{i=1}^{n} K\left(\frac{x - X_{i}}{h}, \frac{y - Y_{i}}{h}\right)$ $h_{opt} = \sigma * A(K) * n^{-\frac{1}{6}}$



Where K = Bivariate Epanechnikov Kernel

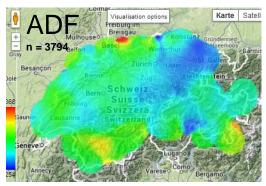
$$K(x,y) = \begin{cases} \frac{2}{\pi}(1-x^2-y^2), & \text{if } x^2+y^2 < 1\\ 0, & \text{otherwise.} \end{cases}$$

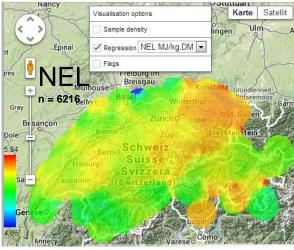

h = bandwidth (smoothing factor) x, y = coordinates

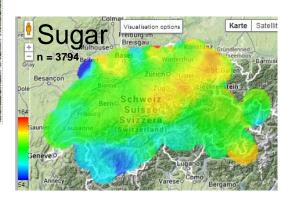
Sample density: color scale dynamically generated for each selected data set

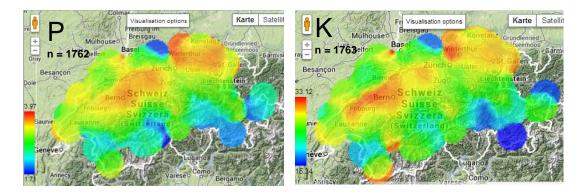
Hay survey: countrywide sample distribution

Maize grains: regional sample distribution

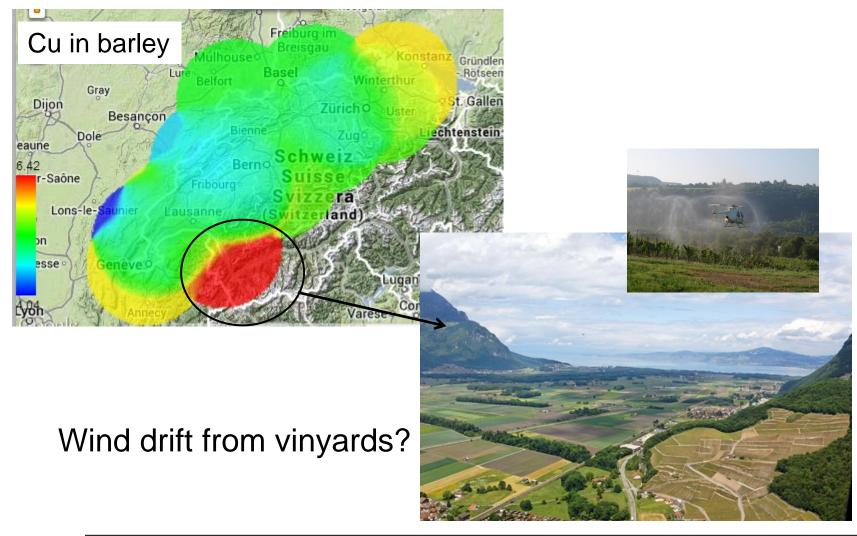


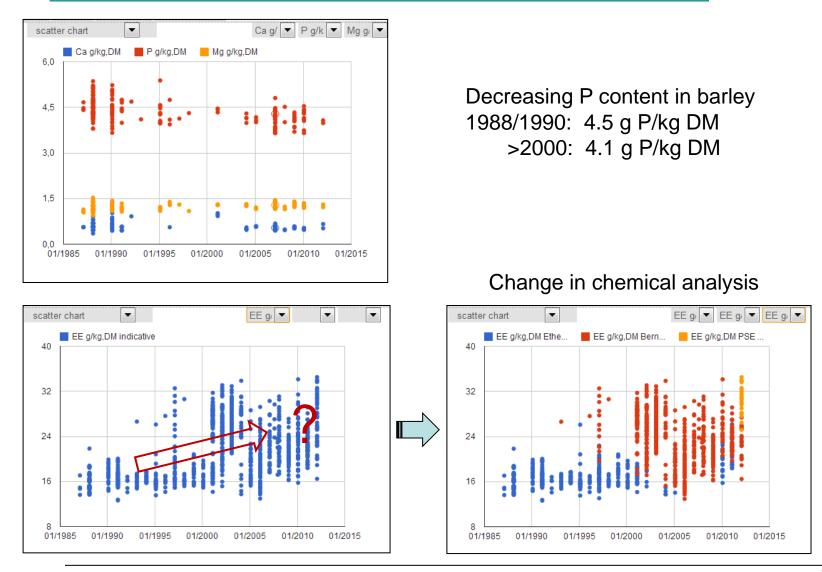

Spatial patterns in hay quality (Kernel regression)


The nutrient density at the location (x,y) is:

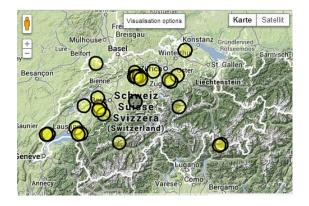

$$\hat{g}_h(x,y) = \frac{\sum_{i=1}^n K\left(\frac{x-X_i}{h}, \frac{y-Y_i}{h}\right) Q_i}{\sum_{i=1}^n K\left(\frac{x-X_i}{h}, \frac{y-Y_i}{h}\right)}$$

Reliable interpretation with >1000 locations





Spatial pattern in barley: local effects on Cu


Temporal analysis in barley: minerals, fat

Advanced data analysis: region comparison

Visualisation options Karte Satellit	оп	one-to-many regions 💌									
Hu will Willfsau Men bau Ruswil		cation elect	NEL MJ/kg,DM	Radius in km	Similarity similar Compute	compute					
User defined target region		ZIP	City	Canton	Probability of similarity	Altitude in m					
comdos 0	1	1077	Servion	Vaud	0.99878	600 - 799					
Entilebuch	2	5058	Wiliberg	Aargau	0.99645	600 - 799					
erswil	3	6465	Unterschächen	Uri	0.99068	> 1000					
Lan lat on Schoneim C	4	3158	Guggisberg	Bern	0.97234	800 - 999					
	5	8535	Herdern	Thurgau	0.97182	< 600					
INESCO S	6		Les Monts-de-Corsier	Vaud	0.96858	800 - 999					
Eggenil Biosphare Entlebuch	7	8816		Zürich	0.96039	600 - 799					
Marbach	8	7603	Vico	Graubünden	0.96019	> 1000					
Siswil Giswil Giswil	9	76	mark rows for	Graubünden	0.96019	> 1000					
Porthorn Lungern	10	18		/aud	0.95950	600 - 799					
	11	18	map display	/aud	0.95950	800 - 999					

Top 30 most similar regions

EAAP Annual Meeting, August 26th – 30th 2013 Nantes, France Annelies.Bracher@agroscope.admin.ch

Conclusions

- Recent developments of the online Swiss feed database support intuitive and advanced data analysis down to individual samples with the use of visual tools.
- Scatter plots visualize temporal patterns or trends and show the full extent of variation.
- As a novel approach, spatial patterns are generated for large, georeferenced data sets using the Kernel regression technique.
- Now two complementary approaches for forages:
 1) Reference nutritive values dependent from botanical composition, growth stage, cut number and type of conservation (from 2007) however, not dependent from year and geographical region.

2) Detailed spatio-temporal data (from 2013), however without information on botanical composition nor growth stage.

For further discovery: <u>www.feedbase.ch</u>