

Assessing the global biodiversity impact of livestock production

2013 EAAP conference – Nantes (France)

Félix Teillard, Alessandra Falcucci, Pierre Gerber

Introduction

The global impact of livestock production on biodiversity Why measuring it?

Livestock have a strong influence on biodiversity

Introduction

The global impact of livestock production on biodiversity **How** to measure it?

LCA Framework

Modeled (linear) relationships

Indicator Framework

Indicators

Introduction

The global impact of livestock production on biodiversity **How** to measure it?

LCA Framework

Methods

The Mean Species Abundance (MSA, Alkemade et al. 2009)

- Meta analysis: MSA in disturbed vs. undisturbed situations
- MSA values for different land use/intensities
- Applicable at global scale

Arable land	Impact on MSA	Grassland
	0	Natural grassland
	0.3	Livestock grazing
Low input agriculture	0.7	
Intensive agriculture	0.9	Man-made pasture

90% loss of MSA compared to the undisturbed habitat

Methods

- We compute an MSA*km² impact of the livestock feeds
- The impact is allocated where the feed are consumed

$$MSA \times km^2 \text{ impact} = \sum_{lu} Area_{lu} \times MSA \text{ impact}_{lu}$$

Agriculture Department

Animal Production and Health Division

Results

Global impact of three production systems on MSA 5.7% of a complete loss of MSA

Maximal impact:

MSA = 0 on all the global surface

Agriculture Department

Results

MSA*km² impact / production

Production in t of proteins

Agriculture Department

Animal Production and Health Division

Results

MSA*km² impact / production at regional scale

Animal Production and Health Division

Results

F

- ' Great diversity of systems at the pixel scale
- ' Efficient systems () exist all along the intensity range

Arable land		Grassland
	0	Natural
	0.3	Livestock grazing
Low input	0.7	
Intensive	0.9	Man-made pasture

Agriculture Department

Limitations

Positive effects of livestock (eg permanent grasslands in Europe) not taken into account

Inaccurate

MSA*km² impact (%)

Coarse MSA categories
No MSA difference between global regions

Underestimated

Other pressures than land use (nonpoint pollution, CC)

Agriculture Department

Perspectives

- Consider positive effects of livestock on MSA
- Account for other types of pressures
- Reveal the properties of efficient systems, link to more local scales
- Explore synergies and trade-offs between environmental criteria

Thank you

Felix.Teillard@fao.org

