

Assessing climatic effects on the reproductive performance of sows in a temperate climate

Christian Lambertz, Kerstin Wegner and Matthias Gauly

Department of Animal Sciences Georg-August-University Göttingen, Germany

64th EAAP – Nantes – 27.08.2013

Negative effects of high temperatures on sows

Weaning-to-service interval	Almond & Bilkei, 2005 Prunier et al., 1997
Conception rate	Almond & Bilkei, 2005 Suriyasomboon et al., 2006
Litter size	Almond & Bilkei, 2005 Edwards et al., 1968
Live born piglets	Omtvedt et al., 1971
Stillborn piglets	Omtvedt et al., 1971

Heat stress effects during gestation

Day of gestation	Effect
8. – 16.	Disordered implantation of embryos, Reduced conception rates, Reduced no. of vital embryos
53. – 61.	No effects of heat stress
102. – 110.	Less live born, more stillborn piglets

Omtvedt et al. (1971)

When does heat stress begin ?

- Above 22 °C (Black et al., 1993)
- But: temperature explains climatic effects insufficiently
 - → Development of temperature-humidity index (THI) as heat stress indicator
 - \rightarrow No exact thresholds for sows described

Objectives

What effects does the THI have on the reproductive performance in sows ?

Materials and Methods

- 6 indoor sow farms in Northern Germany
- Juli 2011 August 2012

Measurements

- Temperature and relative humidity recorded
- 2 data loggers
 - Farrowing,
 - Waiting,
 - Servicing compartment

Temperature-humidity index

NWSCR (1976):

THI = [(1.8 T) + 32] - [0.55 (RH/100] * [((1.8 T) + 32) - 58]

where T is the temperature (°C) and RH the relative humidity (%)

Reproductive performance

- 8 274 litters
- Herd monitoring program db-Planer (BHZP, Ellringen)
 - Mating date and no.
 - Parity no.
 - Farrowing and weaning date
 - No. of live born and stillborn piglets
 - No. of weaned piglets
 - Preweaning mortality
 - Weaning-to-service interval

Statistics

$$\mathbf{Y}_{ijklm} = \mathbf{\mu} + \mathbf{P}_i + \mathbf{S}_j + \mathbf{P}\mathbf{S}_k + \mathbf{F}_l + \mathbf{THI} + \mathbf{e}_{ijklm}$$

- Y_{ijklm} = reproductive parameter
- μ = overall mean
- P_i = fixed effect of parity i (5 classes)
- $S_i = fixed effect of season j (4 classes)$
- $PS_k = \begin{cases} fixed effect of the interaction between parity and season \end{cases}$
- F_1 = fixed effect of the farm (1 to 6)
- THI = covariate
- e_{ijklm} = random residual term

THI effects

THI effects

– Before farrowing

THI effects

– After farrowing

Results and discussion

Fixed effect of parity

Fixed effect of parity

Fixed effect of parity

Effect of THI after AI on litter size

Effect of THI after AI on litter size

Effect of THI before farrowing on live born piglets

Effect of THI before farrowing on stillborn piglets

Effect of THI after farrowing on weaned piglets

Effect of THI after farrowing on preweaning mortality

georg-august-universität göttingen Summary

- THI had effects on the reproductive performance in sows
- Sows:
 - Less live born piglets
 - Less stillborn piglets
- Piglets:
 - Increased no. of weaned piglets
 - Lower preweaning mortality

Conclusions

- \rightarrow Piglets' performance increased with higher THI-values
- → Higher THI-values negatively affected reproductive performance of the sows at the time of farrowing

Nachhaltiges Landmanagement Norddeutsches Tiefland

NalaMa-nT

We acknowledge:

The studied farms.

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Thanks for your attention !

GEORG-AUGUST-UNIVERSITÄT Reproductive performance of the studied farms (N=6)

Parameter	Mean	Range
Farrowing rate (%)	71	64 - 81
Live born piglets (n)	13.6	13.1 - 14.6
Piglets weaned/litter (n)	11.6	10.9 - 12
Piglets weaned/sow / year (n)	27.8	26.2 - 30
Preweaning mortality (%)	15	9.1 - 18.1
Weaning -to-service interval (d)	5.2	4.7 - 5.5
Returns-to-service (%)	7.7	3 - 14
Replacement rate (%)	46	35 - 62.2
Litters per sow (n)	4.8	3 - 5.7
Lactation days (d)	22.8	19.3 - 27.4

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN Background

- Heat stress in sows: combination of temp and RH !
- Temperature-humidity index
- Thresholds for heat stress in sows?
- Causes seasonal infertility and decreases reproductive efficiency
- Feed intake reduced by up to 50% (Collin et al., 2001)
- Effects of heat stress greatest during lactation (Williams et al., 2013)
- Different thermal-neutral zones of sows and piglets

Production cycle

- Servicing compartment
 - Single gestation crates until 4 weeks after AI
- Waiting compartment
 - Groups of 10 to 80 sows until 1 week prior to farrowing
- Farrowing compartment
 - Single farrowing crates; weaning after 21 28 days

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

