

Carlos Piñeiro, Joaquin Morales, Matilde Piñeiro

PigCHAMP Pro Europa SL

Content

- Background.

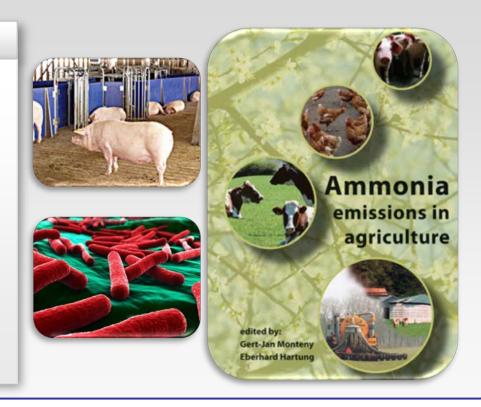
- Physiological basis of stress
- The acute phase reaction

Effects related

- 🖛 Health
- Performance
- 🖛 Transport
- 🖛 Meat
- Transversal through chain
- Linkage between stress and acute phase response (non inflammatory effects)
- And from here, where to?

Background

Market price


Feed price

Regulations

Own business

Restrictive and getting worse

- Environment (IPPC-DEI, Gothemburg, Kyoto)
- Animal Welfare (UE 2013, States in USA, Canadá, Australia or companies –Macdonalds-)
- Antiinfectives use restriction
- Food safety

Trust the final product

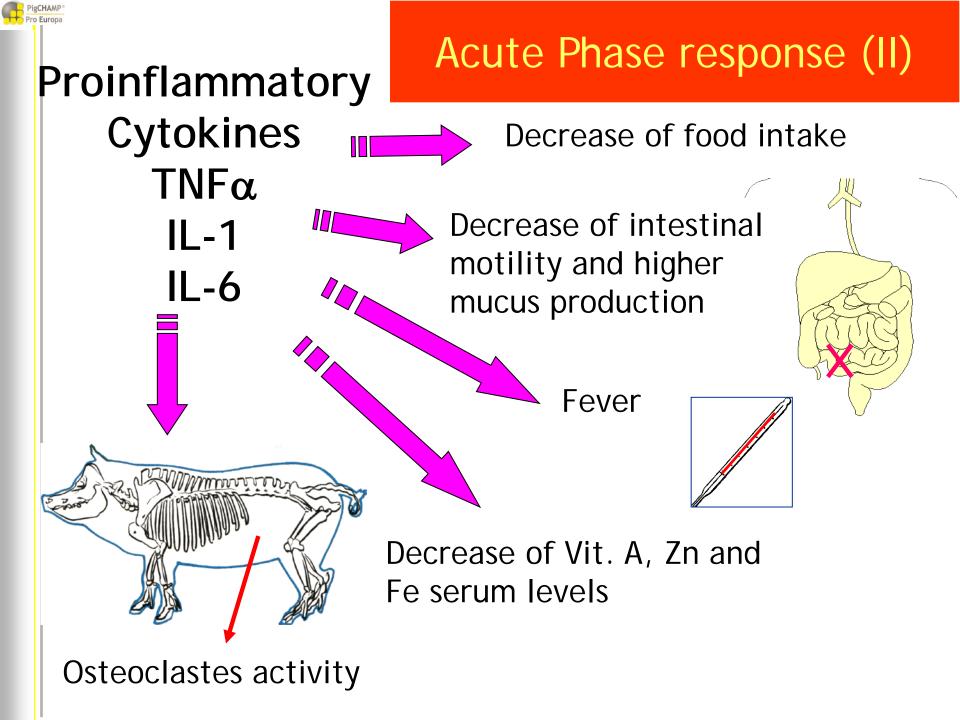
Background

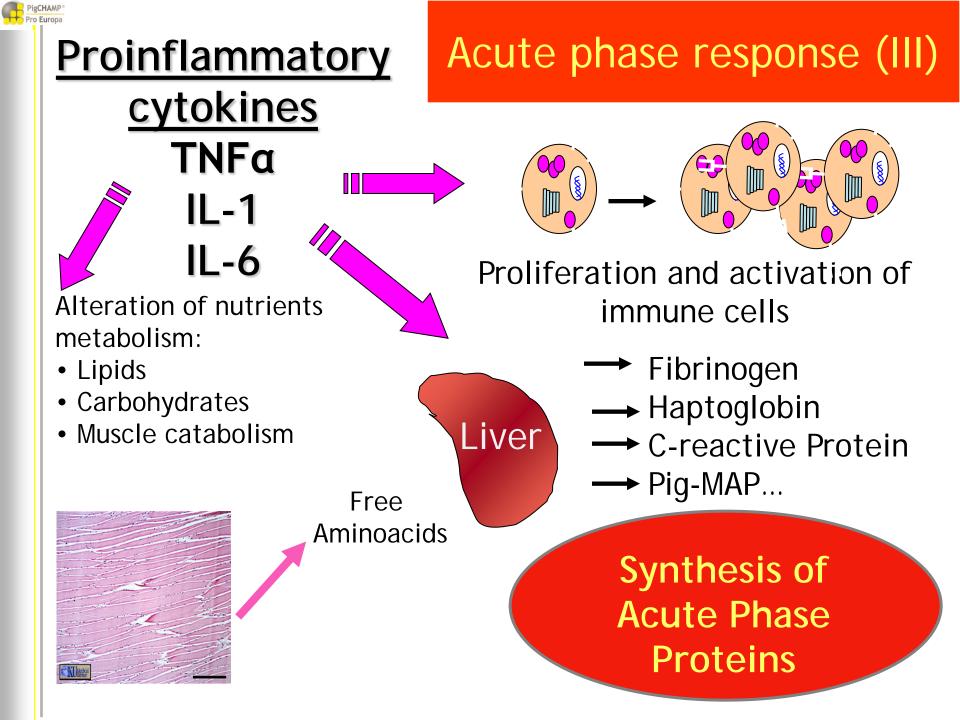
The potential of the current genetic lines often limited by stressors present in the productive system:

- Social stress
- Mixing
- Non adequate feeding
- Stocking density,
- > Temperature
- Pathogens

Stress : biological response of an individual when a threat to homeostasis is perceived

(Moberg, 2000)


Background


Stress

- Does not represent a threat
- Represents a threat (distress)
 - Welfare
 - Health
 - Productive performance
 - Carcass-meat quality
- Response (Baumann, 1994)
 - Behavior
 - Central Nervous System
 - Neuroendocrine System
 - Immune System

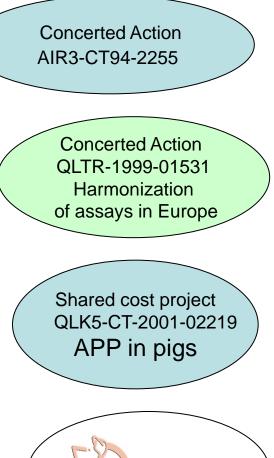
TISSUE DAMAGE Trauma, wounds, burns, surgery, infection, stress Release of pro-inflammatory cytokines (IL-1, IL-6, TNF α) Platelet activation, activation of complement and coagulation pathways, endotelium activation, increase of vasel permeability, release of inflammatory cells Enhancement of pro-inflammatory cytokines release Activation of hypothalamic-pituitary-adrenal (HPA) axis Systemic reaction

Metabolic cost (Hipocrates's 'ponos')

APP functions

Defense mechanisms / Restoration of homeostasis

 Opsonization and complement activation


- ✓ Neutralization of free radicals
- Removal of released hemoglobin
- Neutralization of proteolitic enzimes
- ✓ Participation in regulatory processes

APP in pigs, from basic knowledge to practical aplication.

Initial studies (mainly from late 90's)

- -Which are the main APPs in pigs
- What does elevate pig APPs?
 - Basal levels/Acute phase levels
 - Variability (animal/herd)
 - Behaviour in commercial conditions
 - Availability of assays

Application of APP in animal production

PORK

Measuring APP

 Availability of Assays: A range of assays adequate for the different APP in different species have been developed.

•Assays should be validated: Specifity

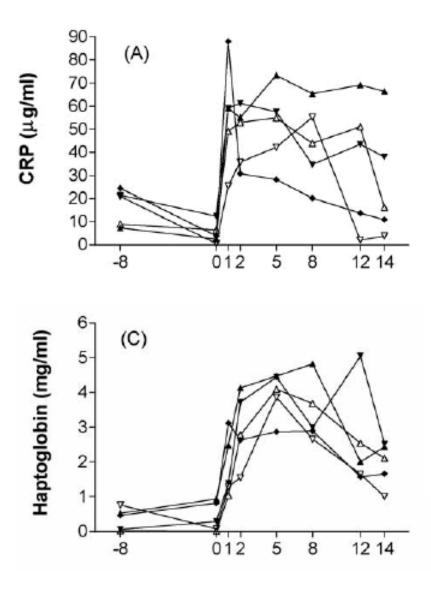
Accuracy

Precission

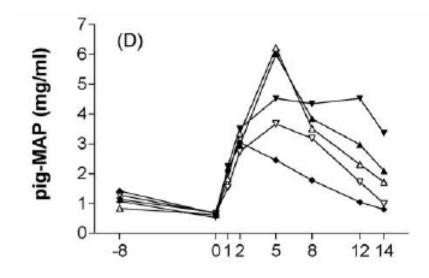
Sensibility...

•Importance of the standard: Use of common standards for comparing the results. Species specific. European Reference Serum for pig APP (European concerted action QLTR-1999-01531)

APP in swine health and production


Reflects the presence of immunological stress That has a cost!

- Looses of productive performance
- Increased susceptibility to acute disease outbreaks



APP's in infectious diseases

APP during a bacterial infection: S. suis

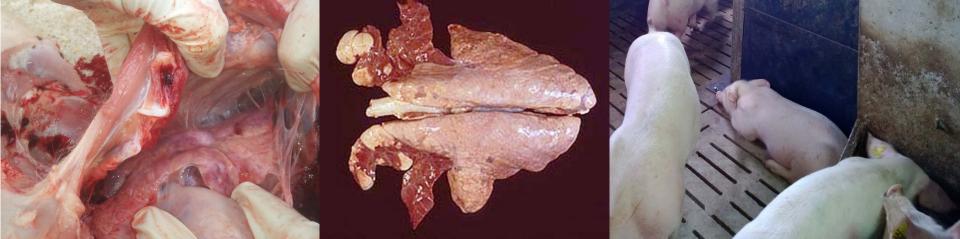
- 5 weeks old SPF pigs.
- Infection with S suis serotype 2 (strain SS02-0119), 10¹⁰ CFU, on day 0

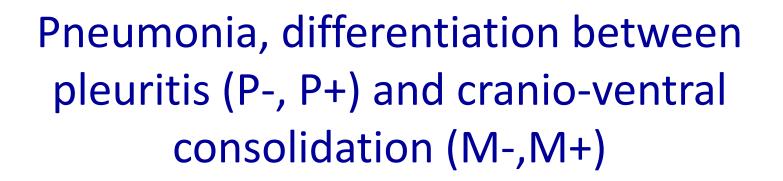
Sorensen et al. 2006, Vet Immunol Immunopathol 113:157-68.

APP during a bacterial infection: H. parasuis

Martin AJ et al, Comp Immunol Microbiol Infec Dis 2008

Mean values \pm SD of the serum concentration of pig MAP in the experimental groups after infection with a lethal dose of *H. parasuis*.

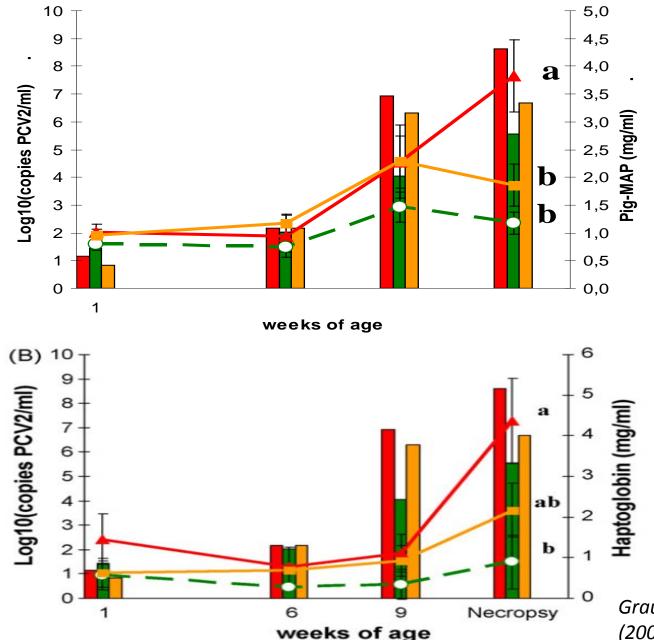

Treatment group ^a	Pig MAP concentration (mg/ml)						
	day 0	day 1	day 3	day 6	day 9	day 13	
I	0.6 ± 0.1 n = 4	5.7 ± 0.4 n = 2 $(P < 0.0001)^{b}$	16.0 n = 1 $(P < 0.0001)^{b}$	16.0 n = 1 $(P < 0.0001)^{b}$	*	*	
П	0.7 ± 0.3 n = 5	2.9 ± 2.1 n = 5 $(P = 0.0011)^{b}$	1.8 ± 0.9 n = 5 (P = 0.0766)	1.1 ± 0.3 n = 5 (P = 0.5526)	0.8 ± 0.2 n = 5 (P = 0.8083)	0.8 ± 0.2 n = 5 (P = 0.7872)	
ш	0.6 ± 0.1 n = 4	4.3 ± 1.7 n = 4 $(P < 0.0001)^{b}$	3.3 ± 0.2 n = 2 $(P = 0.0034)^{b}$	1.8 ± 0.2 n = 2 (P = 0.2048)	1.3 ± 0.3 n = 2 (P = 0.4166)	0.9 ± 0.0 n = 2 (P = 0.7314)	
IV	0.6 ± 0.2 n = 4	3.1 ± 1.4 n = 3 $(P = 0.0006)^{b}$	1.6 ± 0.1 n = 2 (P = 0.1066)	1.2 ± 0.2 n = 2 (P = 0.3801)	0.8 ± 0.1 n = 2 (P = 0.7147)	0.7 ± 0.0 n = 2 (P = 0.9076)	
v	0.6 ± 0.2 n = 3	1.6 ± 0.6 n = 3 (P = 0.2422)	1.3 ± 0.2 n = 3 (P = 0.4864)	1.1 ± 0.2 n = 3 (P = 0.6443)	0.8 ± 0.1 n = 3 (P = 0.8663)	0.7 ± 0.1 n = 3 (P = 0.9313)	
VI	0.5 ± 0.1 n = 3	1.7 ± 0.2 n = 3 (P = 0.1934)	1.5 ± 0.3 n = 3 (P = 0.2517)	1.1 ± 0.2 n = 3 (P = 0.5213)			


Pneumonia, differentiation between pleuritis (P-, P+) and cranio-ventral consolidation (M-,M+)

Saco et al, Res. Vet. Sci. (2010)

	Haptoglobin (g/L)		Pig-MAP (g/L)	
	Mean	Interval	Mean	Interval
P-M-	1.31 ^a	±0.19	0.63 ^a	±0.09
P+M-	1.59ª	±0.25	0.81 ^b	±0.11
P-M+	1.45 ^a	±0.23	0.90 ^b	±0.12
P+M+	1.91 ^b	±0.23	1.04 ^c	±0.13
Kruskal–Wallis test	14.99 (P = 0.002)		56.775 (P = 0.000)	
P-	1.38	±0.15	0.77	±0.08
P+	1.76	±0.17	0.93	±0.08
Mann-Whitney's U	22333.0 (P = 0.001)		20987.5 (P = 0.000)	
M-	1.45	±0.16	0.72	±0.07
M+	1.68	±0.16	0.97	±0.04
Mann-Whitney's U	23051.5 (P = 0.033)		15928.5 $(P = 0.000)$	

Groups with different letter showed significant differences (Kruskal-Wallis test).



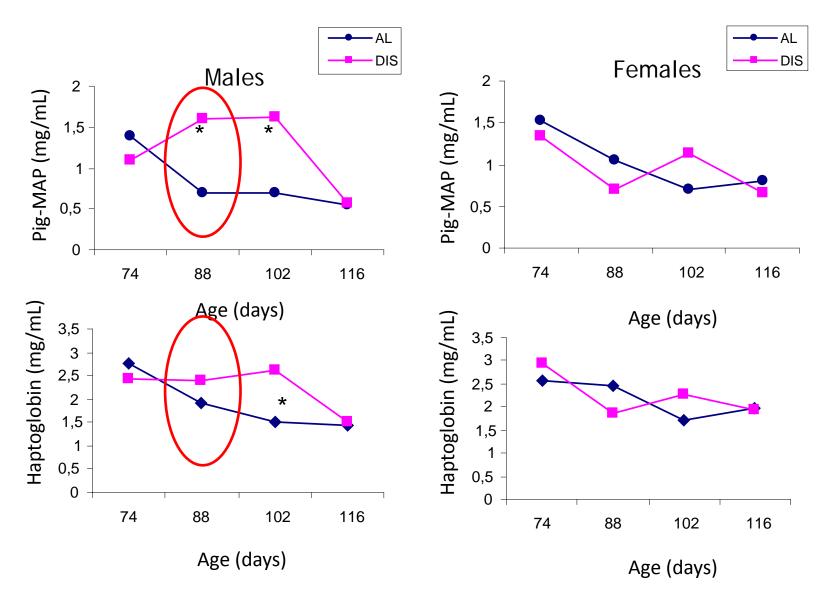
- Pigs with pleuritis (P+) showed higher concentration of APP's (PigMAP, Hp, CRP) than (P-).
- Pigs with higher incidence ov CVPC (M+) showed higher concentrations of PigMAP and Haptoglobin
- Pigs from farms (P+ M+) showed higher concentration of APP's (PigMAP, Hp, CRP) than (P-M-). PigMAP fwas the best biomarker to differenciate these farms.
- PigMAP was the only APP able to discriminate between farms P-M- and farms with prevalence of just one of the lessions (P-M+, P+M-).

Saco et al, Res. Vet. Sci. (2010)

Commercial farms affected by PMWS (PCV2)

7 farms, longitudinal study. Animals euthanised at the PMWS outbreak and classified as:

PMWS (35) Healthy (29) Wasted non-PMWS (43)

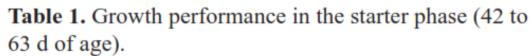

Grau-Roma et al, Vet. Microbiology (2009) APP and productive performance

Changes in the pattern of feeding (Ad libitum -AL- vs Disordered –DIS-)

	74-88			88-102		
	ADG	FGR	FI	ADG	FGR	FI
AL group						
Male	523 ^a	1.96	0.95 ^a	577	1.91	1.05
Female	439 ^b	2.36	0.99 ^a	627	2.05	1.25
DIS group						
Male	398 ^b	2.61	0.82 ^b	513	2.37	1.09
Female	445 ^b	2.11	0.91 ^{ab}	574	2.03	1.13
s.e.	22.0	0.263	0.032	32.2	0.129	0.056
Significance						
Treatment	**		**	ŧ	+	
Sex			+	+		*
Interaction	* *				+	

Piñeiro et al., 2007, Animal 1, 133-139

Changes in the pattern of feeding

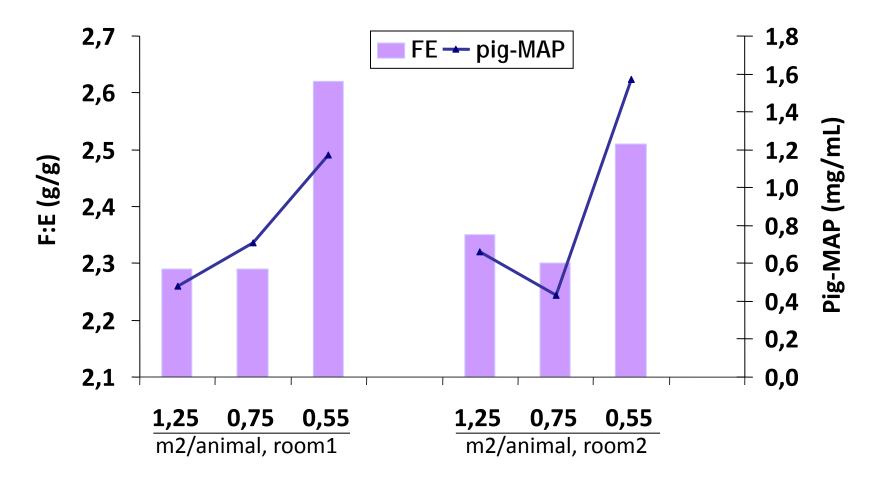


Piñeiro et al., 2007, Animal 1, 133-139

Feeding: AL: ad libitum, DIS: disorderly

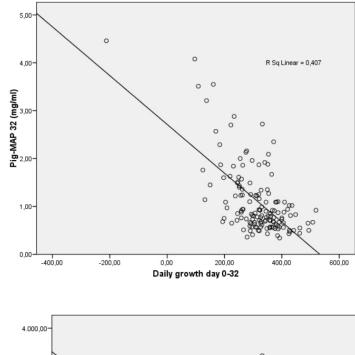
E. Coli outbreak

	Final BW, kg	ADG, g/d	G:F, g/g
T1-ZnO	16.51	358.8	0.586
T2-HiZox	17.93	424.3	0.694
SEM, n = 12	0.208	7.315	0.0069
Probability	< 0.001	< 0.001	< 0.001


• Nursery trial

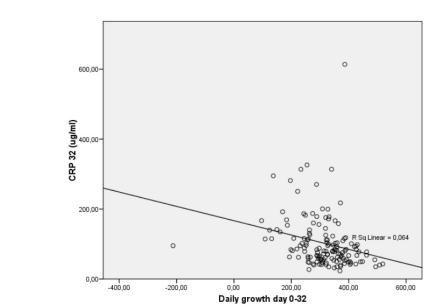
Pro Europa

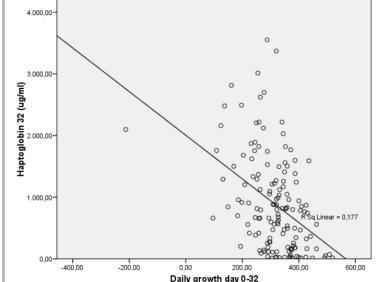
- 2 different sources of Zn
- Comparison of productive performance and acute phase reaction


Morales et al, J. Anim. Sci 2012

Feed efficiency and APP in over stocking

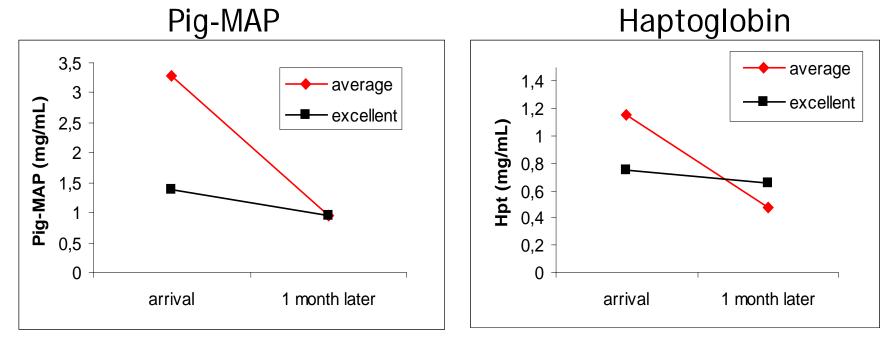
Own data, not published


Effect of addition of butyrate in a weaned piglet diet on the acute phase response in nursery piglets



Thesis Vakdierenasts Varken, R. Jansen DVM, May 2013

- ADG : only significant correlation (p<0.001) for PigMAP with the highest r2= 0.40
- PigMAP was the best correlated with differences in mortality



A) 24h, Average conditions

1.5 m2/boar, no sawdust, with no feed and water provided

B) 48h, Excellent conditions

2 m2/boar, sawdust, feed and water provided

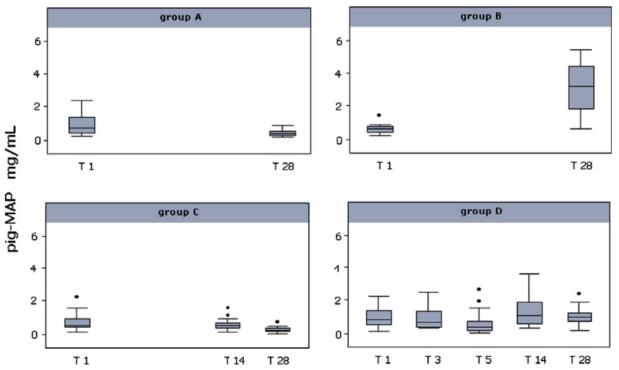
Piñeiro et al., 2007, Vet J 173,669-674

A) 24h, Average conditions

1.5 m2/boar, no sawdust, with no feed and water provided

B) 48h, Excellent conditions

2 m2/boar, sawdust, feed and water provided


	Arrival	1 Month later	P value
Transport 1 $(n = 16)$			
Pig-MAP (mg/mL)	3.28 ± 1.50	0.94 ± 0.24	0.0004
Haptoglobin (mg/mL)	1.15 ± 0.54	0.48 ± 0.50	0.0011
CRP (µg/mL)	19.5 ± 12.8 (15)*	15.6 ± 9.0 (6)*	_
Albumin (mg/mL)	29.0 ± 2.2	25.2 ± 3.6	0.0858
Total protein (mg/mL)	91.5 ± 3.3	82.9 ± 7.4	0.0382
Cortisol (ng/mL)	29.0 ± 17.0	28.9 ± 11.3	1.0000
Transport 2 $(n = 32)$			
Pig-MAP (mg/mL)	1.39 ± 0.75	0.96 ± 0.14	0.001
Haptoglobin (mg/mL)	0.75 ± 0.61	0.65 ± 0.33	0.532
CRP (µg/mL)	$22.5 \pm 14.8 (12)^{*}$	$17.0 \pm 5.3 (5)^*$	_
Albumin (mg/mL)	29.1 ± 2.1	25.8 ± 2.5	0.000
Total protein (mg/mL)	88.8 ± 6.9	79.9 ± 6.2	0.0003
Cortisol (ng/mL)	26.2 ± 17.0	25.8 ± 11.0	0.857

Piñeiro et al., 2007, Vet J 173,669-674

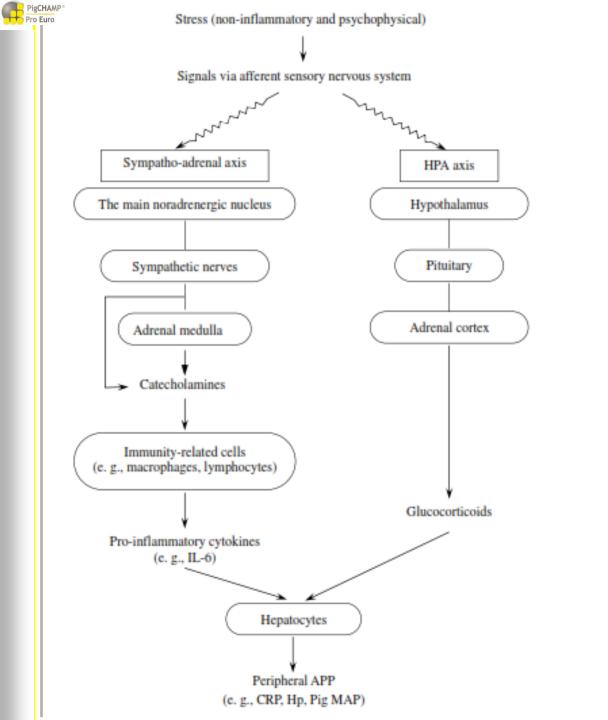
4 groups, T1, T3, T5, T14, T28

Measuring transport effect and later adaptation

Conclusion suggest stress effect on APP besides of inflammatory classical explanatacion

Salamano G et al., 2007, Vet J

Stress and acute phase response; an inconspicous but essential linkage

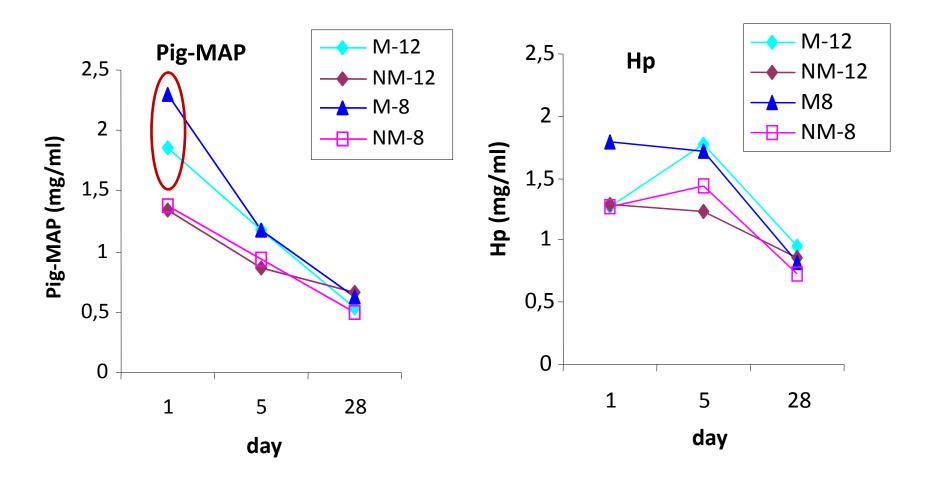

- Strictly speaking, induction of APPs due to transportation stress has already been found in cattle (Murata and Miyamoto, 1993; Arthington et al., 2003) but the study of Pineiro and colleagues is the first to confirm the stress APP linkage in pigs under commercial conditions, suggesting that the APP response is inducible to a considerable extent by stressful events to which domestic animals are ubiquitously exposed during daily management.
- In this editorial, I propose a hypothesis that could explain the nature of the stress-APP linkage. <u>The hypothesis is based on a neuroendocrine-immune network concept.</u> Briefly,

(1) signals originating in sensory organs in response to stress (in this case, noninflammatory and psychophysical stress) are transmitted via afferent sensory nerve fibres to the brain and,

(2) activate the neuroendocrine centres including the sympatho-adrenal axis and the hypothalamic-pituitary-adrenal (HPA) axis.

(3) this activation leads to the release of catecholamines and glucocorticoids, which neurotransmitters

4) directly and/or indirectly (through induction of pro-inflammatory cytokines in immunity-related cells) activate the production and release of APP in the liver, thereby
5) augmenting peripheral APP levels in stressed animals.



Stress and acute phase response; an inconspicous but essential linkage; hypothesis for **APP** induction in stressed animals

Murata, H., 2007, Vet J. Guest editorial

APP and management

Mixing at the entry of the fattening barn

Four experimental groups: M:mixed, NM:non mixed, 12 animals/pen, 8 animals/pen.

APP In pig production, QLK5-CT-2001-02219,

APP at abattoir

- Assessment of health status of pigs. Meat inspection.
- Posibility of measuring in blood or meat juice

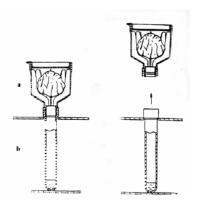
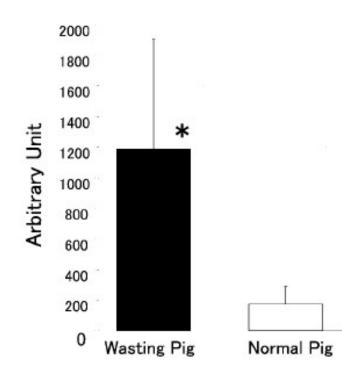
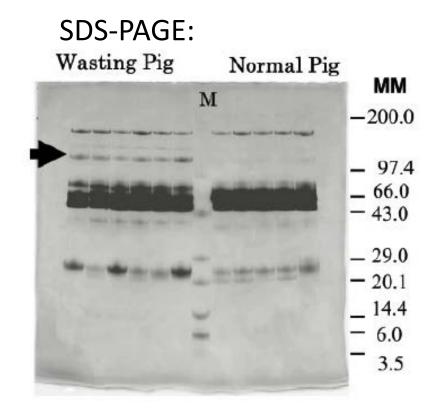


Figure 4.6: Meat juice container (Nielsen et al. 1998)


<u>APP at slaughter</u>: wasting pigs.


Yamane et al., 2006. Increases in Pig Major Acute Phase Protein in Wasting Pigs Brought to the abattoir. J. Vet Med. Sci. 68(5): 511-13

- Difficulties in stablishing a criteria to determine if these animals are adequate for human consumption
- Need of new diagnostic tools

APP at slaughter: wasting pigs.

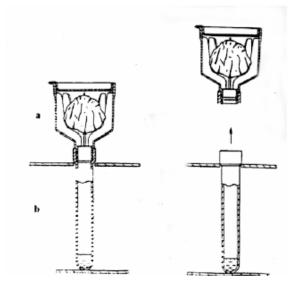
<u>Proteomic analysis:</u> Identification of pig-MAP as a protein increasing significantly in wasting pigs.

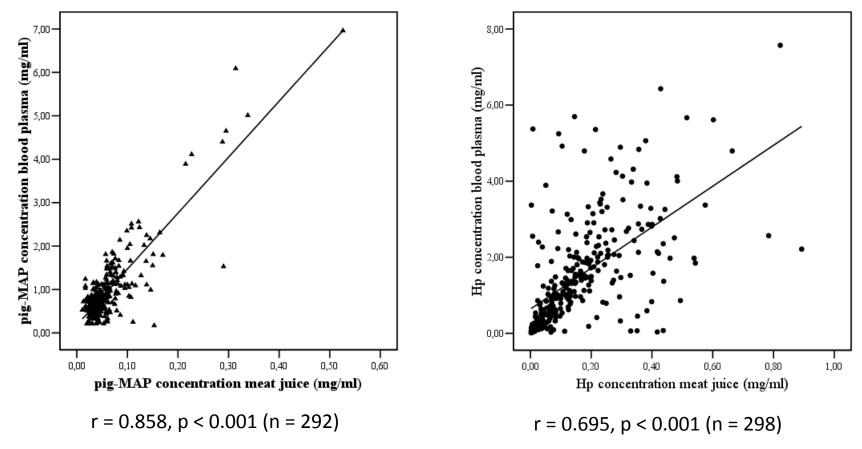
Pig-MAP concentration 7 times higher in wasting pigs (n=20 animals per group)

APP can be also determined in meat juice

•Obtaining of paired samples of slaughter blood and meat (*pars costalis diaphragmatis*)

•Meat juice collected after frozen (-20°C) and thawing (24h, 4°C) of the meat.




Figure 4.6: Meat juice container (Nielsen et al. 1998)

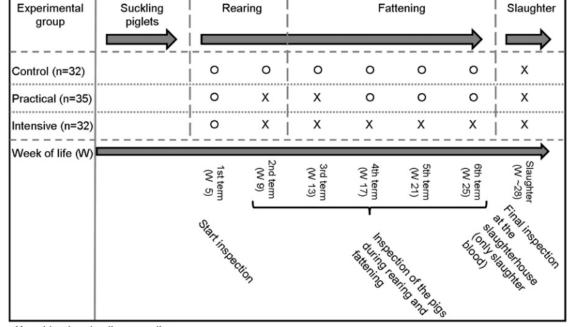
Correlation of APP concentration in blood and meat juice

Pig-MAP

Pro Europa

Haptoglobin

Piñeiro et al., 2009, Res Vet Sci 87, 273-276


APP and production chain

Is everything coherent when combined?

Investigation of pig health and welfare, measured by APP concentration in serum-saliva (PigMAP, HP) with:

- Pig performance data
- Carcass meat quality attributes
- Organ findings

ro Europa

through correlation coefficients

Coherence of animal health, welfare and carcass quality in pork production chains. Klauke et al. 2013, Meat Sci. 95(3):704-11.

X = blood and saliva sampling

O = saliva sampling

W = week of life

Results

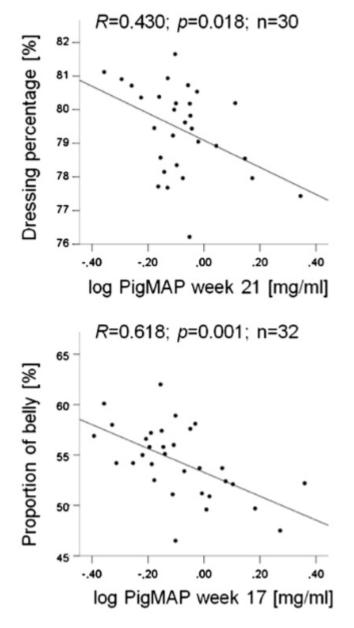
APP's and performance

 Correlations with feed efficiency were stronger for PigMAP and become more significant to the time point of slaughter

APP's and meat quality traits

Positive significant correlation with IMF and negative correlation with water content in *L. dorsi*

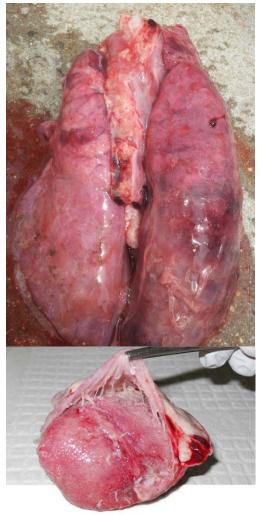
Coherence of animal health, welfare and carcass quality in pork production chains. Klauke et al. 2013, <u>Meat Sci.</u> 95(3):704-11.


<u>Results</u>

Coherence of animal health, welfare and carcass quality in pork production chains. Klauke et al. 2013, <u>Meat Sci.</u> 95(3):704-11.

APP's and carcass composition

- Higher PigMAP
 concentrations resulted in
 lower weight of loin and
 reduced proportion of belly.
- Hp and PigMAP negatively
 correlated with lean meat
 carcass and belly content
- PigMAP positively correlated
 with fat / meat ratio

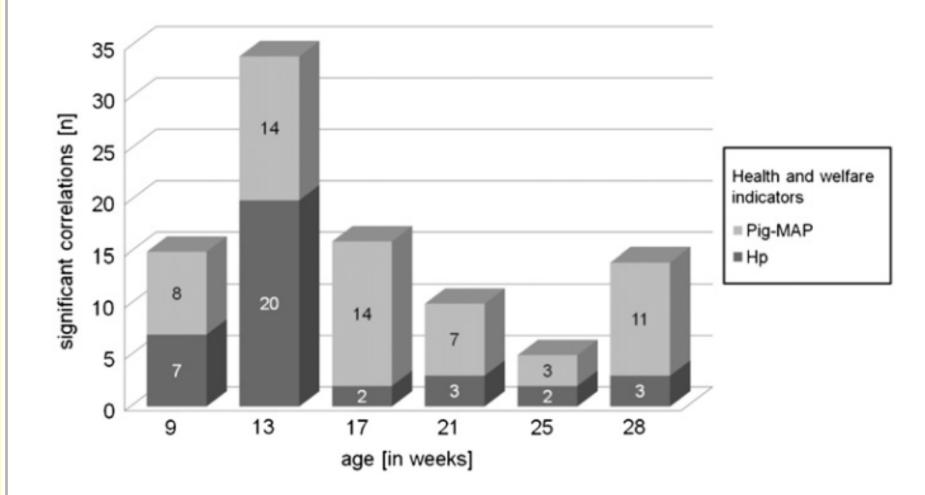


Results

Coherence of animal health, welfare and carcass quality in pork production chains. Klauke et al. 2013, <u>Meat Sci.</u> 95(3):704-11.

APP's as predictors of increased risk for organs findings

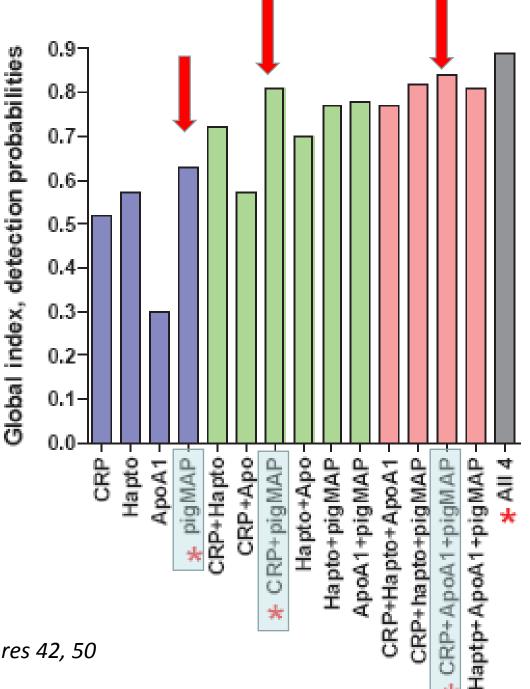
- No clinical symptoms during the study but 18 out of 99 showed organ findings (only one case with AB treat.)
 - 9 pneumonia
 - 2 pericarditis
 - 3 milk spots
- 5 combinations of above
 PigMAP and Hp showed positive correlations (HP r=0.180 p=0.017 and PigMAP r=0.194 p=0.027)



Results

ro Europa

Coherence of animal health, welfare and carcass quality in pork production chains. Klauke et al. 2013, <u>Meat Sci.</u> 95(3):704-11.


Number of significant correlations identified through the age of the pigs (57 PigMAP, 37 Hp)

What APP should we determine?

ro Europa

Acute phase index (the best option using 1, 2 or 3 of them)

Heegaard et al., 2011, vet res 42, 50

APP economics

Association between APP concentration, hygienic status productive performance and medical cost.

Would anyone be surprised if the result is that this is costing a lot of money?

We are putting our money in keeping the immune system active! (energy, aminoacids,...)

APP In pig production, QLK5-CT-2001-02219 U. Bonn results,

Association between APP concentration, hygienic status productive performance and medical cost.

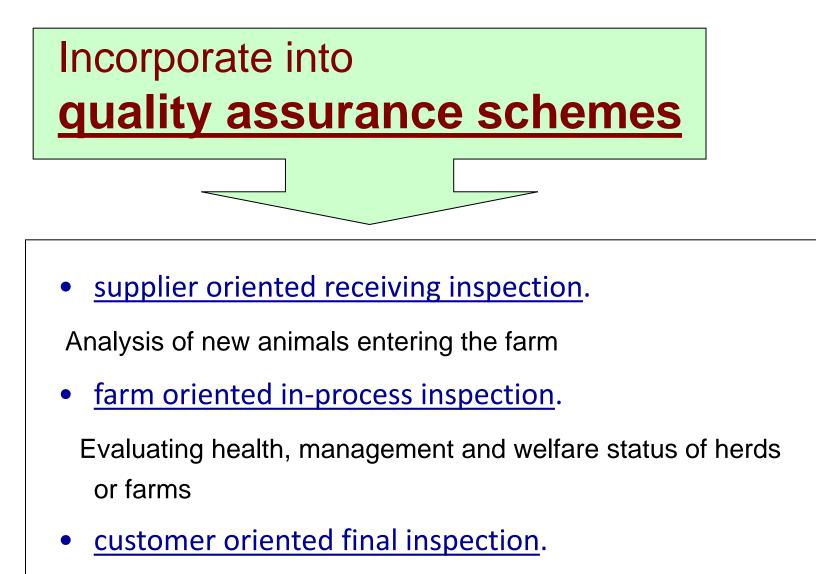
- APP concentration at the beginning of the rearing period was associated with <u>hygienic status</u> in the breeding farm.
- Pigs with <u>lower growth rate</u> had <u>higher APP</u>
 <u>concentration</u> at the end of the rearing period (> or < 450 g/day, APP measured 3 days before moving to the fattening).
- Animals with a <u>higher antibiotic treatment</u> cost during the rearing period, <u>had higher APP concentration</u> at the beginning of the rearing period.

And now what? What is the practical use?

- <u>Research</u> (immunity, diseases, health, welfare, ...)
- 2. <u>Trials aiming the</u> <u>assessment of products</u>

(AIF, vaccines), production systems or health plans

 Quality of production evidences within <u>certification schemes</u>



Incorporation into Quality Assurance Schemes

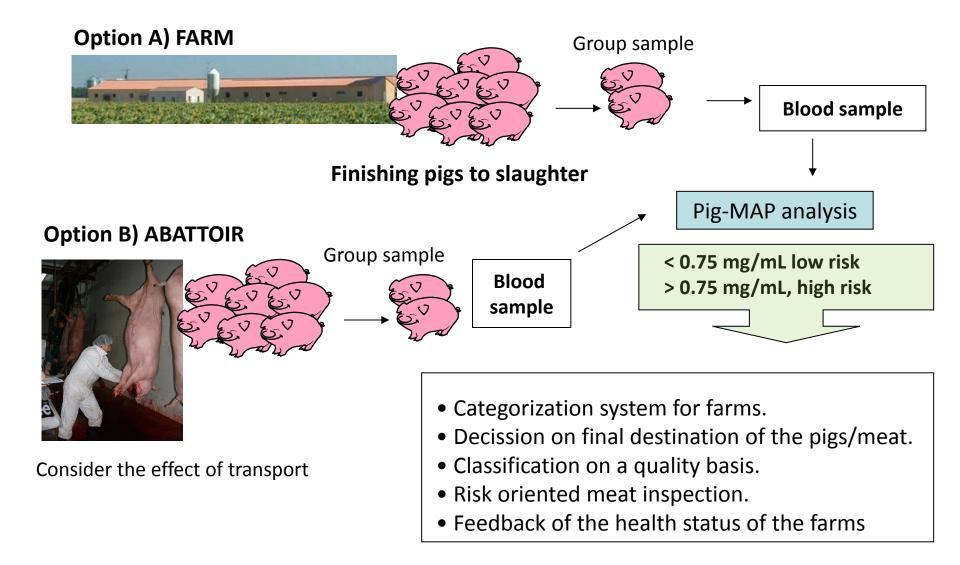
Ensuring the health and management of animals delivered

Under a certain threshold of APP's, absence of clinical disease or poor management can be ensured.

Monitoring APP in pig production.

Animals to be delivered. End point analysis at slaughter line.

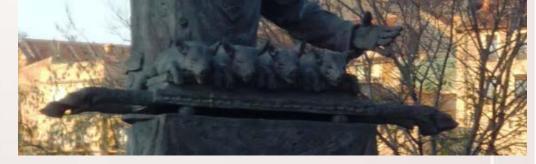
Rapid method Stick PigMAP


- Immunocromatographic method (dipstick)
- Results in 15 minutes
- Positive with pig-MAP above 1.5 mg/mL
- No need of laboratory equipment
- For serum or whole blood

RISK ORIENTED INSPECTION SYSTEM

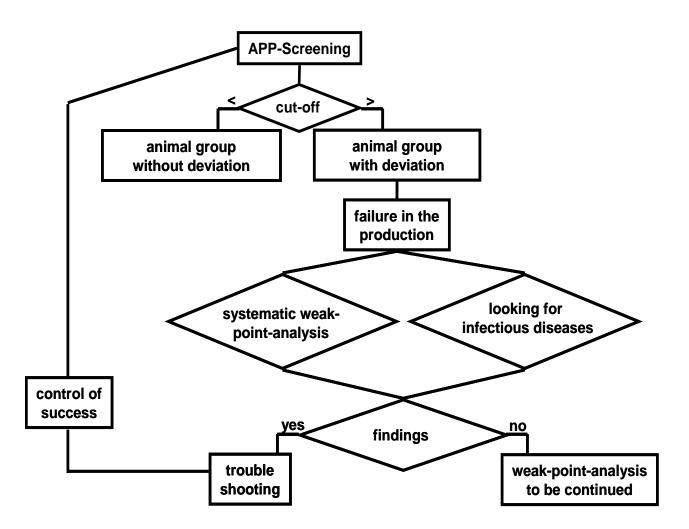


Conclusions APP


- 1. General marker of health and welfare
- 2. Unespecific but sensitive, accurate enough to discriminate subtle situations and quantitative
- 3. Detects problems independently of its origin
- 4. Early detection
- 5. Increases with
 - 1. Diseases (clinical or subclinical)
 - 2. Stress caused by poor management during raising period and transport

6. Correlates with

- 1. Increased medicines costs
- 2. Losses of productive performance
- 3. Higher risk of organ findings in abattoir



carlos.pineiro@pigchamp-pro.com

Thank you!

APP monitoring

Questions to consider when Measuring<u>APP</u>

•How many animals to sample?

10 animals per age group will be enough for many aplications.

- Enough to detect the problem
- Not too much because of cost.

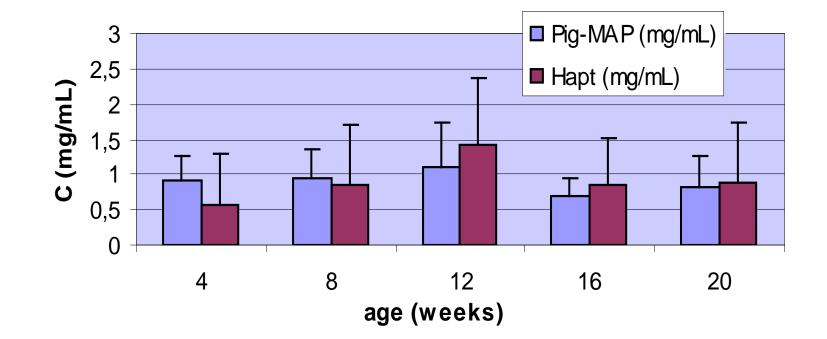
•Take samples randomly. Do not focus in runts or chronically sick animals.

•Record information about the animal (sex, age) and management and health conditions at the farm. This will help you to interpretate the results

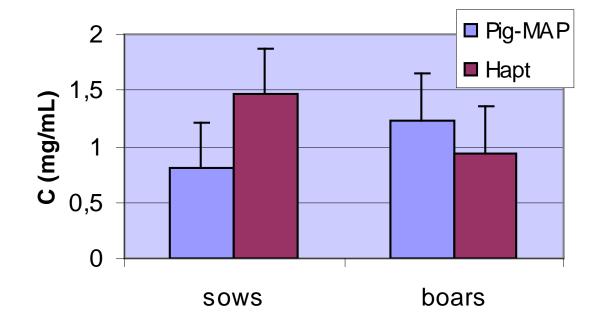
Questions to consider when Measuring <u>APP</u>

•Avoidable Changes

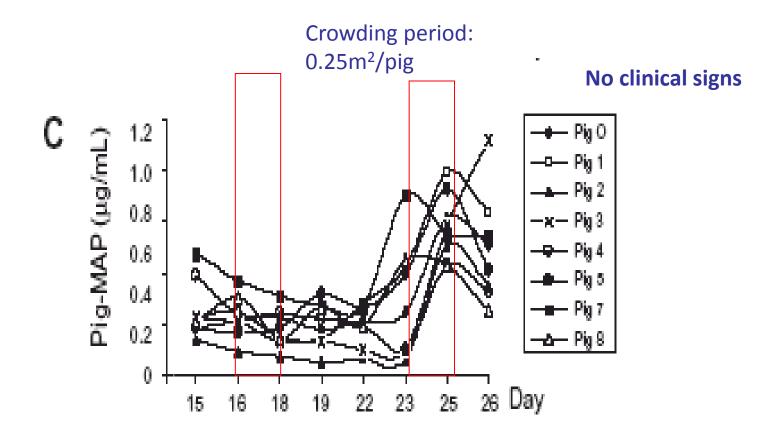
Detect problems in your productive system


- Disease
- •Bad managment condition causing stress

- Transport
- Vaccination..



Pig-MAP and Haptoglobin reference values in commercial farms.



Pig-MAP and Haptoglobin reference values in commercial farms.

APP during a crowding period

Marco-Ramell et al, 2011 Veterinary Journal. Eight Duroc × (Landrace × Large White) male pigs (18–20 kg bodyweight) were housed in a pen with a slatted floor at a density of 0.50 m²/pig (100 kg/m², lower density, ID) at day 1, and the density was changed to 0.25 m²/pig (200 kg/m², higher density, HD) for two 4-day periods over 26 days by moving the fence (Fig. 1). The