64th Annual Meeting of the European Federation of Animal Science

28th August 2013

Pierre-François ROUX

Using NGS to characterize genetics of meat-type chicken lines

INRA, UMR PEGASE, Rennes, France Animal genetics department

Biological context

- Challenge in genetics : identify QTL and causative mutation underlying complex traits
- → **Purpose :** To offer tools for medicine diagnosis in human genetics or for animal selection
- → Thousands of QTL identified, whatever the species considered, using linkage analysis
- → But size of QTL are usually very large and contain hundreds genes : it is still hard to identify causal mutation

Biological context

- → Challenge in genetics : identify QTL and causative mutation underlying complex traits
- → **Purpose :** To offer tools for medicine diagnosis in human genetics or for animal selection
- → Thousands of QTL identified, whatever the species considered, using linkage analysis
- → But size of QTL are usually very large and contain hundreds genes : it is still hard to identify causal mutation

Technologic context

- → More and more studies based on NGS data
- → Some questions are still raised : impact of sequencing depth, how to filter those data ...
- → Available tools for mapping, filtering, calling, annotating are numerous
- Interesting to study in a give study, in a given species, how reliable those data are

 Use NGS to detect SNP and selective sweep in QTL region to highlight candidate mutation

7 F0 LL, 4 F0 FL and 9 F1 hybrid Whole genome (20 X) Captured 10 Mb region (100 X)

DATA PROCESSING

→Alignment on WASHUC2.1	B\
→Filter on mapping quality	Sa
→Removal of PCR duplicates	Sa
→Realignment / Recalibration	G
→SNP calling	G
→Annotation	Ve

BWA Samtools Samtools GATK GATK VeP

VALIDATION STEP

Comparison 20 X vs 100 X

BedTools

QTL mapping study on abdominal fatness (AF) and breast muscle weight (BMW) Lagarrigue et al., 2006

7 F0 LL, 4 F0 FL and 9 F1 hybrid Whole genome (20 X) Captured 10 Mb region (100 X)

DATA PROCESSING

→Alignment on WASHUC2.1	BWA
→Filter on mapping quality	Samto
→Removal of PCR duplicates	Samto
→Realignment / Recalibration	GATK
→SNP calling	GATK
→Annotation	VeP

VALIDATION STEP

Comparison 20 X vs 100 X Be

DIFFERENTIAL GENOMIC ANALYSIS

Using whole genome DNASeq data

→ Selective sweep

7 F0 LL, 4 F0 FL and 9 F1 hybrid Whole genome (20 X) Captured 10 Mb region (100 X)

DATA PROCESSING

→Alignment on WASHUC2.1	BWA
→Filter on mapping quality	Samto
→Removal of PCR duplicates	Samto
→Realignment / Recalibration	GATK
→SNP calling	GATK
→ Annotation	VeP

VALIDATION STEP

Comparison 20 X vs 100 X BedTools

Using whole genome DNASeq data

→ Selective sweep

HapFLK

COMPARISON BETWEEN 20 X AND 100 X SNP CALLING RESULTS

COMPARISON BETWEEN 20 X AND 100 X SNP CALLING RESULTS

- → Context
- → Intersection between the two sets of SNP
- → Characteristics of 20 X specific SNP

Same individuals sequenced with both
 20 X and 100 X on a 10 Mb window

SNP 20 X: 98 % in intersection 2 % specific

But specific SNP are, in average, of poor quality (average call rate < 90 %) and must be considered as false positives

→ Context

COMPARISON BETWEEN 20 X AND 100 X SNP CALLING RESULTS

Intersection between the two sets of SNP

Same individuals sequenced with both
 20 X and 100 X on a 10 Mb window

SNP 20 X : 98 % in intersection
 2 % specific

But specific SNP are, in average, of poor quality (average call rate < 90 %) and must be considered as false positives

SNP 100 X : 86 % in intersection 14 % specific

Specific SNP have an average call rate of 92 % i.e. among them there are false positives and reliable SNP

COMPARISON BETWEEN 20 X AND 100 X SNP CALLING RESULTS

- → Context
- → Intersection between the two sets of SNP
- → Characteristics of 20 X specific SNP
- → Characteristics of 100 X specific SNP

Same individuals sequenced with both
 20 X and 100 X on a 10 Mb window

SNP 20 X : 98 % in intersection 2 % specific

But specific SNP are, in average, of poor quality (average call rate < 90 %) and must be considered as false positives

SNP 100 X : 86 % in intersection 14 % specific

Specific SNP have an average call rate of 92 % i.e. among them there are false positives and reliable SNP

20 X re-sequencing is sufficient to have information for almost all SNP

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

→ General characteristics

General characteristics

Chicken genome size :1.05 GbSNP per individual :2.7 M (± 0.5)SNP density :2.6 / kbSNP in the global scheme :9.4 M

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

- → General characteristics
- → Genome wide functional consequences : global overview

Functional consequences

	SNP		Genes
All types of SNP	N	%	N
Intergenic	4513004	48,68	-
Regulatory regions	776080	8,37	17352
Intronic	3873604	41,78	14087
Coding - Synonymous	65276	0,70	11905
Coding - Non Synonymous	43410	0,47	10676

SNPs density in accordance with literature

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

- → General characteristics
- → Genome wide functional consequences : global overview

Functional consequences

	SNP		Genes
All types of SNP	Ν	%	N
Intergenic	4513004	48,68	-
Regulatory regions	776080	8,37	17352
Intronic	3873604	41,78	14087
Coding - Synonymous	65276	0,70	11905
Coding - Non Synonymous	43410	0,47	10676

SNPs density in accordance with literature

Approximately 50 % of SNP are in intergenic regions

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

- → General characteristics
- → Genome wide functional consequences : global overview

Functional consequences

	SNP		Genes
All types of SNP	N	%	Ν
Intergenic	4513004	48,68	-
Regulatory regions	776080	8,37	17352
Intronic	3873604	41,78	14087
Coding - Synonymous	65276	0,70	11905
Coding - Non Synonymous	43410	0,47	10676

SNPs density in accordance with literature

- Approximately 50 % of SNP are in intergenic regions
- ➡ Only 1.2 % are located on genes

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

- → General characteristics
- → Genome wide functional consequences : global overview

Functional consequences

	SNP		Genes
All types of SNP	Ν	%	N
Intergenic	4513004	48,68	-
Regulatory regions	776080	8,37	17352
Intronic	3873604	41,78	14087
Coding - Synonymous	65276	0,70	11905
Coding - Non Synonymous	43410	0,47	10676

- SNPs density in accordance with literature
- Approximately 50 % of SNP are in intergenic regions
- ➡ Only 1.2 % are located on genes
- ➡ Among the 17,838 genes listed on the chicken genome, 60 % have at list 1 non synonymous SNP

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

- → General characteristics
- → Genome wide functional consequences : global overview
- → Genome wide functional consequences : focus on coding SNP

Functional consequences

	SN	SNP	
Coding SNP	N	%	N
Synonymous	65276	59,45	11905
Missense	27711	25,24	8214
Initiator or stop codon	495	0,45	461
Splicing site	16286	14,83	7155
Mature mi-RNA	34	0,03	30

⇒ SNPs density in accordance with literature

- Approximately 50 % of SNP are in intergenic regions
- ➡ Only 1.2 % are located on genes
- ➡ Among the 17,838 genes listed on the chicken genome, 60 % have at list 1 non synonymous SNP
- 60 % of the SNP located on genes are synonymous

CHARACTERIZATION OF WHOLE GENOME SNP IN OUR LINES

- → General characteristics
- → Genome wide functional consequences : global overview
- → Genome wide functional consequences : focus on coding SNP

Functional consequences

	SNE	P	Genes
Coding SNP	N	%	N
Synonymous	65276	59,45	11905
Missense	27711	25,24	8214
Initiator or stop codon	495	0,45	461
Splicing site	16286	14,83	7155
Mature mi-RNA	34	0,03	30

➡ SNPs density in accordance with literature

- Approximately 50 % of SNP are in intergenic regions
- ➡ Only 1.2 % are located on genes
- ➡ Among the 17,838 genes listed on the chicken genome, 60 % have at list 1 non synonymous SNP
- 60 % of the SNP located on genes are synonymous
- ➡ Missense SNP concern 45 % of genes

GENOME SCAN TO DETECT SELECTIVE SWEEPS USING HAPFLK

GENOME SCAN TO DETECT SELECTIVE SWEEPS USING HAPFLK

Selective sweeps

Chr	Chr size (Mb)	Selective sweeps (n)
1	200.99	36
2	154.87	25
3	113.66	17
4	94.23	21
5	62.24	1
6	37.40	5
7	38.38	3
8	30.67	1
10	22.56	6
11	21.93	5
12	20.54	1
13	18.91	1
14	15.82	4
17	11.18	1
20	13.99	1
24	6.40	1
TOTAL	1050.9	129

GENOME SCAN TO DETECT SELECTIVE SWEEPS USING HAPFLK

→ Number of sweeps

Selective sweeps

Chr	Chr size (Mb)	Selective sweeps (n)
1	200.99	36
2	154.87	25
3	113.66	17
4	94.23	21
5	62.24	1
6	37.40	5
7	38.38	3
8	30.67	1
10	22.56	6
11	21.93	5
12	20.54	1
13	18.91	1
14	15.82	4
17	11.18	1
20	13.99	1
24	6.40	1
TOTAL	1050.9	129

129 sweeps distributed on 16 chromosomes

GENOME SCAN TO DETECT SELECTIVE SWEEPS USING HAPFLK

- → Number of sweeps
- → Size of sweeps

Selective sweeps

Chr	Chr size (Mb)	Selective sweeps (n)
1	200.99	36
2	154.87	25
3	113.66	17
4	94.23	21
5	62.24	1
6	37.40	5
7	38.38	3
8	30.67	1
10	22.56	6
11	21.93	5
12	20.54	1
13	18.91	1
14	15.82	4
17	11.18	1
20	13.99	1
24	6.40	1
TOTAL	1050.9	129

➡ 129 sweeps distributed on 16 chromosomes

➡ Average size : 98 kb (± 90)

GENOME SCAN TO DETECT SELECTIVE SWEEPS USING HAPFLK

- → Number of sweeps
- → Size of sweeps
- → Number of SNP per sweep

Selective sweeps ➡ 129 sweeps distributed on 16 chromosomes Chr size Selective Chr (Mb) sweeps (n) 1 200.99 36 2 154.87 25 **3** 113.66 17 \Rightarrow Average size : 98 kb (± 90) 94.23 21 4 5 62.24 1 37.40 5 6 7 38.38 3 Average number of SNP in sweeps : 30.67 1 8 22.56 6 850 (± 700) 10 21.93 5 11 20.54 12 1 13 18.91 1 15.82 14 4 11.18 17 1 13.99 1 20 6.40 24 1 TOTAL 1050.9 129

GENOME SCAN TO DETECT SELECTIVE SWEEPS USING HAPFLK

- → Number of sweeps
- → Size of sweeps
- → Number of SNP per sweep
- → Number of genes per sweep

Selective sweeps

Chr	Chr size (Mb)	Selective sweeps (n)
1	200.99	36
2	154.87	25
3	113.66	17
4	94.23	21
5	62.24	1
6	37.40	5
7	38.38	3
8	30.67	1
10	22.56	6
11	21.93	5
12	20.54	1
13	18.91	1
14	15.82	4
17	11.18	1
20	13.99	1
24	6.40	1
TOTAL	1050.9	129

129 sweeps distributed on 16 chromosomes

⇒ Average size : 98 kb (± 90)

Average number of SNP in sweeps : 850 (± 700)

Average number of genes in sweeps : 2.2 (± 1.5)

OVERLAYING QTL MAPPING RESULTS WITH SELECTIVE SWEEP ANALYSIS RESULTS

➡ 20 X sequencing depth is sufficient to study most of SNP and to give a highly reliable information after filtering steps

- HapFLK, adapted for analyses on re-sequencing data, and to take into account genotypes of F1 individuals, allowed us to identify numerous selective sweeps along chicken genome
- The overlaying step between QTL and selective sweep results allowed a reduction of the size of the region to focus on

On these reduced QTL regions we finally identified some interesting functional candidate genes

NGS data also allowed identification of candidate mutations

Perspective

64th Annual Meeting of the European Federation of Animal Science

➡ INRA, UMR PEGASE, Rennes, France Genetics & Genomic Team

- → Sandrine Lagarrigue
- → Olivier Demeure
- → Colette Désert
- → Frederic Lecerf
- ⇒ INRA, LGC, Toulouse, France
 - → Simon Boitard
 - → Bertrand Servin
 - → Frédérique Pitel
- ➡ INRA, SIGENAE, Toulouse, France
 → Anis Djari
- ➡ INRA, Genotoul Plate-form, Toulouse, France
 - → Diane Esquerre

· FEZ

- ➡ INRA, UMR GABI, CRB GADIE, Jouy-en-Josas, France
 - → Sylvain Marthey
 - → Marco Moroldo
- INRA, UMR GABI, Jouy-en-Josas, France
 - → Tatiana Zerjal
 - → Jordi Estelle
 - → Bertrand Bed'hom
 - → Michelle Tixier Boichard
- INRA, UR 38, Avian research, Tours, France
 - → Elisabeth Le Bihan Duval

64th Annual Meeting of the European Federation of Animal Science

28th August 2013

Pierre-François ROUX

Many thanks for you attention

