Estimation of dominance variance with sire-dam subclass effects in a crossbred population of pigs

M. Dufrasne^{1,2}, P. Faux¹, M. Piedboeuf³, J. Wavreille⁴ and N. Gengler¹

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium

² Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture, B-1000 Brussels, Belgium

³ Walloon Pig Breeders Association, B-5590 Ciney, Belgium
⁴ Production and Sectors Department, Walloon Agricultural Research Center, B-5030 Gembloux, Belgium

Background

- ❖Nonadditive genetic effects (e.g. dominance) not negligible but often ignored in genetic evaluations
- **❖** Dominance = interaction of paternal and maternal alleles at the same locus
- ❖Prediction of dominance effects → More precise estimation of totale genetic merit
 - → Beneficial for mate selection programs
- ❖ Inversion of dominance relationship matrix (D-1) difficult with large dataset
- ❖ D⁻¹ can be deduced from F⁻¹, the inverted sire-dam subclasses relationship matrix

Objective

To estimate dominance variance for longitudinal measurements of body weight in a crossbred population of pigs

Conclusions

- Dominance variance exists for growth traits in pigs and may be relatively large
- Additive genetic variance slightly decreases when dominance is added in the model

Data

- ❖ Recorded in test station between 2007 and 2012 on crossbred pigs (Piétrain x Landrace K+)
- 20,120 records of body weight between 50 and 210 days of age from 2,341 different pigs
- ❖ 89 Piétrain boars and 169 Landrace K+ sows
- ❖ Standardization and pre-adjustment of data at 210 days due to variance heterogeneity

Model

Random regression animal model with linear splines (knots at 50, 100, 175, and 210 days)

❖ Model 1: additive

$$y = Xb + Q(Za + Zp) + e$$

❖ Model 2 : additive + dominance

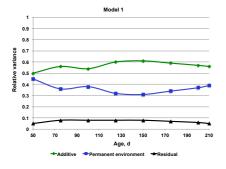
$$y = Xb + Q(Za + Wf + Zp) + e$$

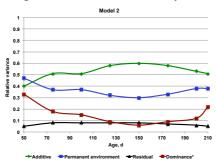
with Var(f) =
$$I\sigma_f^2$$

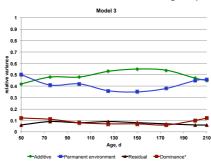
❖ Model 3 : additive + dominance

$$y = Xb + Q(Za + Wf + Zp) + e$$

with
$$Var(f) = F\sigma_f^2$$


F = sire-dam subclasses relationship matrix


y=observations; b=fixed effects (sex, day of test, and heterosis); a=random additive genetic effect; p=random permanent environment; f=random parental dominance; e=residual; X, Z, W=incidence matrices; Q=matrix of linear splines coefficients


Results

Relative variance components for body weight between 50 and 210 days

 $(*\sigma_{d}^{2}=4\sigma_{f}^{2})$

- h² varies between 0.50 and 0.60 and slightly increases with age
- ❖ h² varies between 0.40 and 0.60
- ❖ Dominance variance represents:
 - √ 10 to 83% of additive variance
 - ✓ 6 to 30% of total variance
- ❖ h² varies between 0.42 and 0.55
- Dominance variance represents:
- √ 11 to 30% of additive variance
- √ 7 to 9% of total variance

h² slightly decreases when dominance effect is added in the model (Model 1 vs. Model 2 and 3)

Changes in variance estimates are small between model 2 and 3, except at the beginning and at the end → Border effect?

Ug