Estimation of genetic parameters and breeding values for the major Swiss dairy goat breeds

B. Bapst¹, J. Moll¹, C. Baes¹ and U. Herren²

¹Qualitas AG, Chamerstrasse 56, CH-6300 Zug beat.bapst@qualitasag.ch ²Schweizerischer Ziegenzuchtverband (SZZV), Schützenstrasse 10, CH-3052 Zollikofen

Summary

- Estimated genetic parameters are plausible and the results are comparable to those in other countries
 - Genetic evaluation is now performed and is carried out annually
 - Breeders and organizations are requested to take advantage of this new information

Background

- The number of registered herdbook goats has been steadily increasing over the last years
- ◆ The herdbook currently contains 32,094 goats in 3,134 herds
- 70% of the registered animals belong to the major Swiss dairy goat breeds: Brown Alpine, Saanen and Toggenburg
- Until three years ago Swiss dairy goat breeders made their selection decisions based solely on phenotypic information
- Due to governmental regulations and supported by scientific evidence, a genetic evaluation for milk production traits was developed and put into practice

Material and methods

- BLUP animal model, lactations as repeated measurements
- Using REMLF90 (Misztal, 2002) and BLUPF90 (Misztal, 1997)
- Multivariate runs for genetic parameter estimation and for breeding value estimation
- Data (observation period: 2000-2009):

Breed	Lactations	Herds	
Alpine Brown	40,799	1,086	
Saanen	43,409	1,324	
Toggenburg	15,594	646	

Effects in model:

Effect	Туре	
Lactation number	fix	
Kidding year * season	fix	
Herd * time period ¹	random	
Additiv genetic effect of animal	random	
Permanent environment	random	
Residual	random	

¹ 2 3-year periods, 1 4-year period

Milk production traits and publication criteria

- Milk yield (mkg), fat percentage (fp) and protein percentage (pp)
- 100-day performance as auxiliary traits, 220-day performance as main traits
- Publication of the breeding value (ebv): Mean of the base population (4 to 6 year old goats with at least one observation for auxiliary traits) is 100, standard deviation is 10
- Only main traits are published
- Publication criteria for ebv:
 Bucks: 8 lactating offspring with milk performance results
 Goats: At least one 100-day performance result

Results

 Heritability (h², diagonal) and genetic correlations (off-diagonal) (Alpine Brown, Saanen, Toggenburg)

Trait	mkg 100	fp 100	рр 100	mkg 220	fp 220	рр 220
mkg 100	0.14 <i>0.17</i> <u>0.18</u>					
fp 100	-0.319 -0.221 -0.434	0.27 <i>0.30</i> <u>0.30</u>				
pp 100	-0.426 -0.353 -0.347	0.660 <i>0.624</i> <u>0.709</u>	0.25 <i>0.26</i> <u>0.43</u>			
mkg 220	0.963 <i>0.966</i> <u>0.927</u>	-0.330 -0.184 -0.287	-0.396 - <i>0.310</i> -0.282	0.13 <i>0.18</i> <u>0.14</u>		
fp 220	-0.295 -0.283 -0.422	0.970 <i>0.973</i> <u>0.970</u>	0.653 <i>0.638</i> <u>0.717</u>	-0.313 -0.260 -0.282	0.48 <i>0.42</i> <u>0.38</u>	
pp 220	-0.398 - <i>0.338</i> - <u>0.329</u>	0.662 <i>0.600</i> <u>0.694</u>	0.989 <i>0.983</i> <u>0.972</u>	-0.390 - <i>0.313</i> -0.271	0.671 <i>0.634</i> <u>0.703</u>	0.46 <i>0.42</i> <u>0.56</u>

- Compared to dairy cows: h² for yield are lower, h² for milk content are higher
- Different genetic correlations between the traits are explainable
- Similar genetic parameters were found in literature

