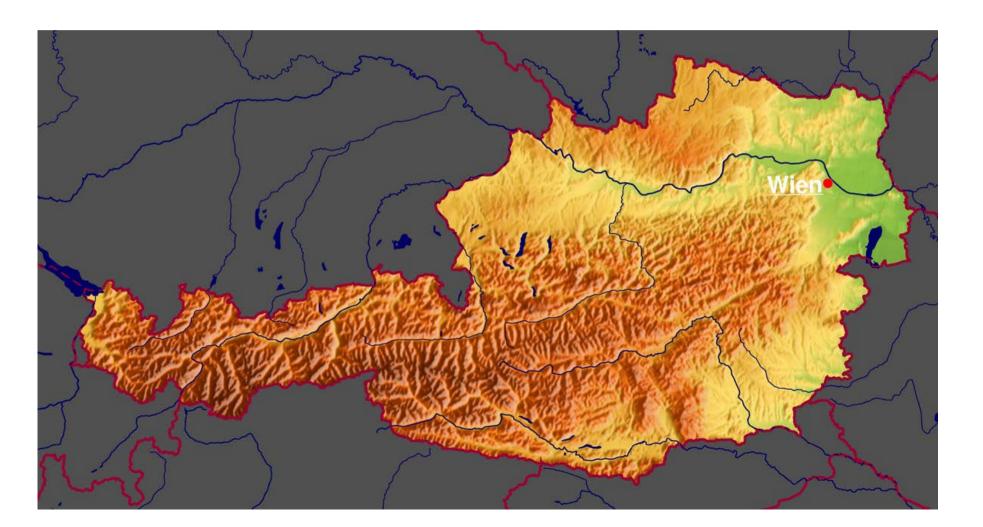
An empirical study of strategies for organic dairy farms in Austria

BOKU

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

64th EAAP Meeting Nantes, France 26th – 30th August, 2013


Stefan Kirchweger Michael Eder

Institute of Agricultural and Forestry Economics University of Natural Resources and Life Sciences Vienna

Map of Austria

Economic strategies in dairy farming

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

High-Output

- Decreasing costs (fix costs) through increasing milk yield per farm
- Increase of milk yield per cow and/or farm growth
- High level of inputs

Low-Input

- Decreasing costs through decreasing inputs (less technology, concentrate, incredients and working units)
- Grassland based
- Leads to reduced milk yield per cow

Economic strategies in dairy farming

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

Basic conditions determine the selection of a certain strategy

- Which production factors are limiting?
- Climate conditions
- Grassland/arable land
- Prices for milk and concentrate
- In organic farming the high-output strategy is limitied
- Organic farming is closer to low-input strategy

Research questions

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

? Which strategy can be identified under the most successful farms from bookkeeping data?

> Clusteranlaysis

- ? How do those strategies perform under volatile market conditions?
 - > Analysis of the time period 2005-2010

Methodology

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

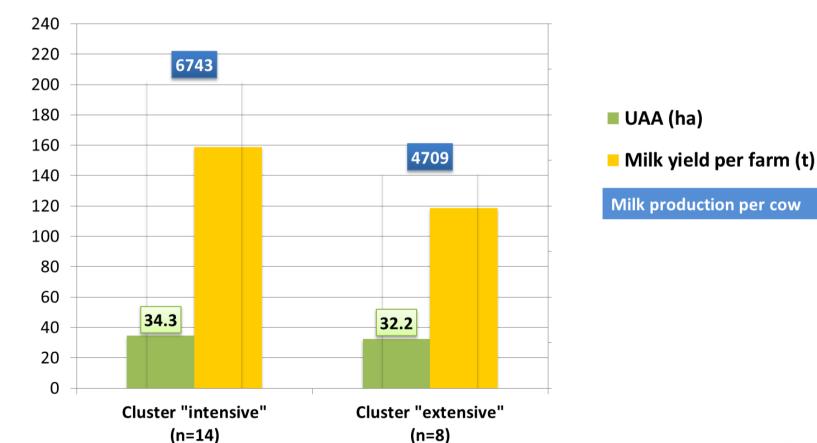
Clusteranalysis (Ward-approach)

- Groups with similar units
- Variables:
 - Costs for concentrate per cow
 - Share of grassland
 - Depreciation per livestock unit
 - Costs for hired work per hectare UAA
- Time series analysis
 - Mean comparison from 2005 2010

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

Voluntarily bookkeeping farms (about 2200 farms)

- Organic
- Specialized dairy farms
- Data from 2005-2010
- Farm income per family labour more than the average


=> 70 farms

Results from clusteranalysis Structural data

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

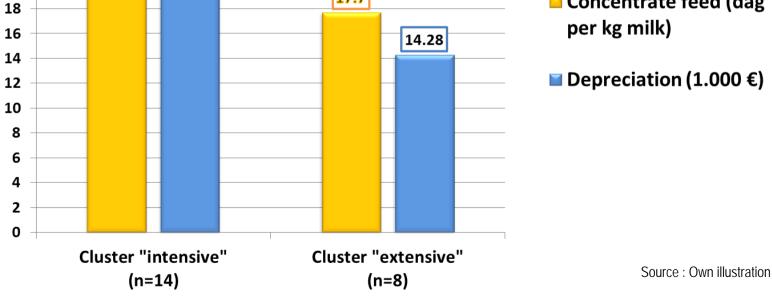
Source : Own illustration UAA = Utilized agricultural area

Results from clusteranalysis Selected inputs

27.3

27.66

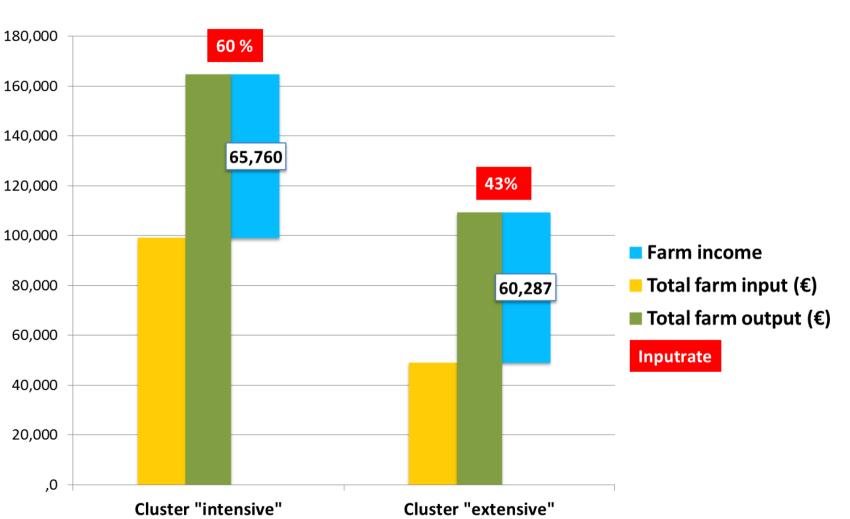
30



Institute of Agricultural and **Forestry Economics** Department of Economics and Social Sciences University of Natural Resources and Life Sciences. Vienna

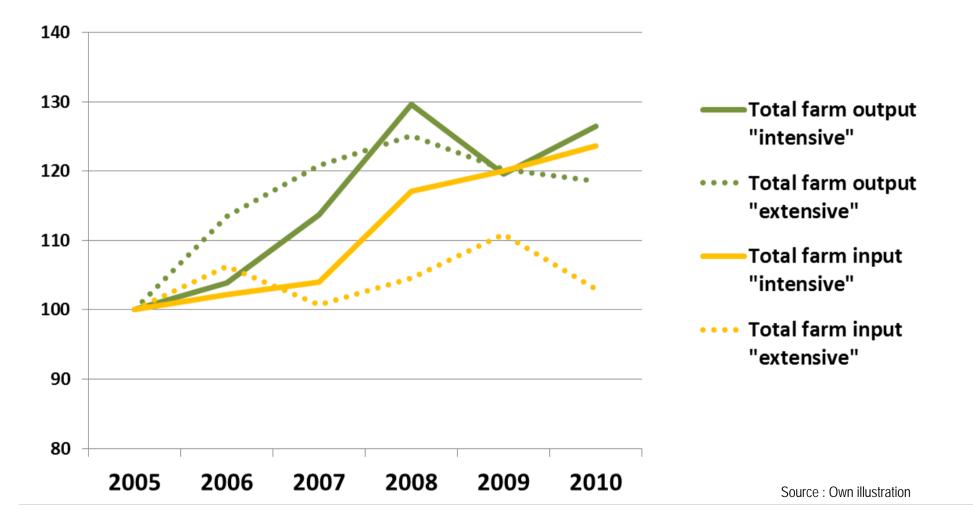
Concentrate feed (dag

17.7


Results from clusteranalysis Income data

(n=14)

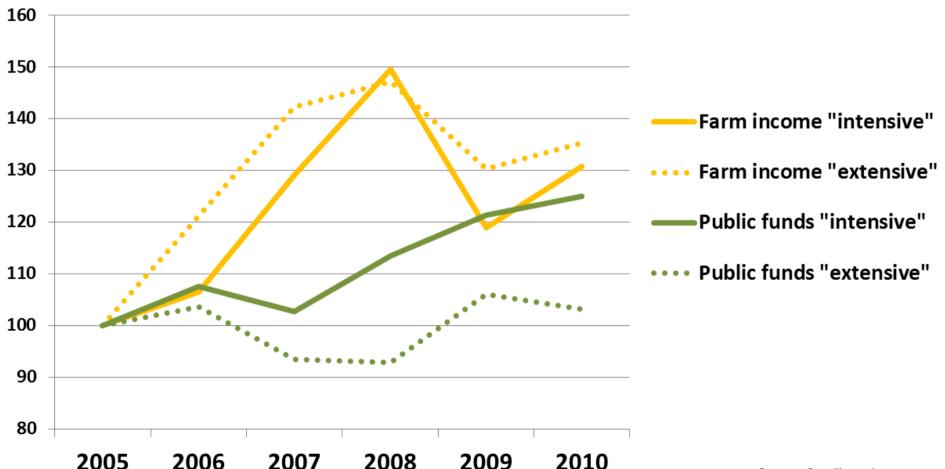
Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna



(n=8)

Source : Own illustration

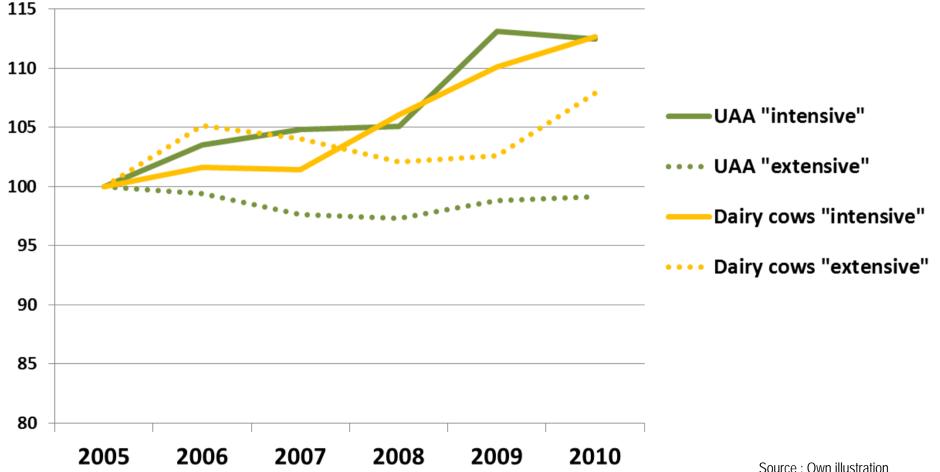
Results for time series analysis Indicies for total farm input and output (2005=100)



Results for time series analysis Indicies for farm income and public funds (2005=100)

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

~


Source : Own illustration

Results for time series analysis Indicies for UAA and dairx cows (2005=100)

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

Source : Own illustration UAA = Utilized agricultural area

Conclusions and discussion

- Both strategies are applied under the "best" farms (number is limited)
- Increasing milk yield is not the only successful strategy
- Strategy selection depends on basic conditions (location, politics,...) and strength of the farm and farmer
- Strategies are influenced differently from price fluctuations
- Intensive production needs better risk management
- Both strategies are successful options for farmers in the future

Institute of Agricultural and Forestry Economics Department of Economics and Social Sciences University of Natural Resources and Life Sciences, Vienna

Thank you for your attention!!

Stefan Kirchweger and Michael Eder Institute of Agricultural and Forestry Economics University of Natural Resources and Life Sciences, Vienna Feistmantelstrasse 4, A-1180 Vienna, Austria. E-Mail: <u>stefan.kirchweger@boku.ac.at</u>

Institu Fores Depart Social Universi

	Cluster 1	Cluster 2	Cluster 3	Cluster 4
	(n=22)	(n=21)	(n=14)	(n=8)
			Cluster	Cluster
			"intensive	"extensiv
	Cluster 1	Cluster 2	"	e"
Daten	(n=22)	(n=21)	(n=14)	(n=8)
Anzahl Betriebe	22	21	14	8
Milk yield per farm (t)	136	223	159	119
UAA (ha)	36.4	44.5	34.3	32.2
Mittelwert von gveproha	116	134	120	133
Mittelwert von kfkuh	354	552	667	299
Farm income	54,670	75,297	65,760	60,287
Mittelwert von ek_lf_nak2	31,196	38,517	37,265	31,403
Mittelwert von milprokuh	5,750	6,255	6,743	4,709
Mittelwert von tmgve	95.8	89.0	69.7	50.7
Mittelwert von öpulant	46.0%	39.8%	39.6%	44.0%
Mittelwert von almant	5.3%	7.5%	7.0%	6.9%
Mittelwert von afamil	192	117	189	130
Mittelwert von tmmil	30	24	20	19
Mittelwert von samil	291	237	308	216
Mittelwert von foermil	237	208	302	320
Concentrate feed (dag per kg milk)	16.2	23.5	27.3	17.7
Total farm input (€)	89,082	94,975	98,992	49,030
Total farm output (€)	143,752	170,272	164,752	109,317
Depreciation (1.000 €)	25.1	23.9	27.7	14.3
Standardabweichung (Grundgesamtheit) von ek_lf_nak2	10,869	12,708	17,520	10,980
Mittelwert von opul	13,498	15,993	16,641	13,893
Mittelwert von nak	1.81	1.89	1.86	1.76