

Supplementary crude protein and phosphorus levels: effect on spring milk production in dairy cows Michael Reid^{1,2}

Dr M O'Donovan¹, Prof C Elliot², Dr J Bailey³, Dr C Watson³, S Lalor⁴ and Dr E Lewis¹

¹Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co Cork, Ireland

²Queens University Belfast, Stranmillis Road, Belfast, UK

³Agri-Food and Biosciences Institute, Newforge Lane, Belfast, UK

⁴Teagasc, Environment Research Centre, Johnstown Castle, Co Wexford, Ireland

Introduction

Irish dairy industry is grass-based system

- Effectively grazed grass is cheapest feed available for Irish farms (Dillon *et al.*, 1995)
- Maximum profitability for dairy farms achieved through optimum utilisation of grass (O'Donovan et al., 2007)
 - Dietary crude protein can affect milk composition (Broderick 2003)
 - Protein composition of milk is central to milk processability (O'Brien et al., 1996)

Introduction

Phosphorus has more known functions in animal body than other minerals

 Vital for energy metabolism in the formation of phosphates and ATP/ADP (McDonald *et al.*, 2001)

Reduced dietary phosphorus can have negative impact on milk protein (Wu and Satter, 2000)

 Anecdotal evidence of cows exhibiting signs of phosphorus deficiency (e.g. eating stones)

Background

- In 2012, 58% whole milk was processed as butter and 31% as cheese (IDB, 2012)
 - Necessary to include measurements related to milk processability in experimental studies
- Milk urea nitrogen (MUN) is an indicator of non-protein nitrogen (NPN) in milk. The concentration of NPN is an important factor in terms of milk processability
 - high NPN → poor processability
- ~ half of phosphorus in milk protein is complexed with casein
 - A reduction in dietary phosphorus may have negative implications for casein concentration
 - → and processability (Satter 2003)

Objectives

- Assess effects of differing dietary nitrogen and phosphorus concentrations on:
 - » Milk yield
 - » Milk composition
 - » Dry matter intake
 - » Body weight (BW) and body condition score (BCS)
 - » Animal N and P status
 - Faecal and urine N and P concentration
 - Blood N and P concentration

Duration: 8 weeks (March – May 2012)

Materials and Methods (1)

- 48 spring-calving dairy cows
- In early lactation (Mar May)
- Randomly allocated to one of four supplementary concentrate treatments (4 kg DM per cow per day) (randomised complete block design)
 - High protein, high phosphorus (HPr-HP)
 - Medium protein, high phosphorus (MPr-HP)
 - Low protein, high phosphorus (LPr-HP)
 - Low protein, low phosphorus (LPr-LP)
- Randomised based on:
 - Calving date
 - BW and BCS
 - Milk yield and composition

Breed

- Economic Breeding Index (EBI)
- Age/Parity
- Offered 13 kg DM grass per cow per day

Materials and Methods (2)

Diet summary

	Crude Protein (g/kg DM)	Phosphorus (g/kg DM)
HPr-HP	266	3.5
MPr-HP	239	3.0
LPr-HP	224	3.1
LPr-LP	224	2.2

- Mean grass CP: 268 \pm 30.8 g/kg DM (higher than expected)
- Mean grass P: 2.7 \pm 0.31 g/kg DM (lower than expected)

Materials and Methods (3)

- Milk yield
 - » Monitored and recorded daily
- Milk composition:
 - » Assessed using four concurrent milkings per week (by cow)
 - » Analysed by mid infra-red spectroscopy (MIR)
- Milk nitrogen fractions
 - » Assessed on three occasions with bulked treatment samples
 - » Analysed using the Kjeldahl method
- Grass dry matter intake (DMI):
 - Assessed on one occasion using the n-alkane technique (Dillon and Stakelum, 1989)
- BW and BCS:
 - » Assessed and recorded weekly

Materials and Methods (4)

- Animal N and P status
 - » Faecal and urine N and P concentration assessed on one occasion
 - » Blood N and P concentration:
 - Three occasions Pre experiment, mid-experiment and postexperiment

Statistical Analysis

- Data analysed using PROC MIXED (SAS, 2001)
 - Terms for treatment, week and treatment x week interaction included in model
 - Cow included as random effect
 - Appropriate covariate used in model

Results (1)

The effects on animal performance of offering concentrates differing in crude protein and phosphorus concentration to grazing dairy cows in early lactation

	HPr-HP	MPr-HP	LPr-HP	LPr-LP	S.E.	Significance
Milk Yield (Kg)	27.6	27.0	26.2	27.0	0.73	ns
Milk Fat (g/kg)	44.5	45.4	46.2	42.7	1.43	ns
Milk Protein (g/kg)	34.0	33.6	33.7	33.9	0.37	ns
Milk Solids Yield (Kg)	2.1	2.1	2.0	2.1	0.05	ns
Casein (%)	2.66	2.60	2.60	2.61	0.031	ns
Conc Intake (kg DM)	4.0 ^a	4.0 ^a	3.8 ^{ab}	3.7 ^b	0.08	**
BW Change (Kg)	39	23	12	22	6.6	ns
BCS Change	-0.05	-0.10	-0.13	-0.05	0.071	ns

a-b Means within a row not sharing a common superscript differ significantly (P<0.05)

Results (1)

The effects on animal performance of offering concentrates differing in crude protein and phosphorus concentration to grazing dairy cows in early lactation

	HPr-HP	MPr-HP	LPr-HP	LPr-LP	S.E.	Significance
Milk Yield (Kg)	27.6	27.0	26.2	27.0	0.73	ns
Milk Fat (g/kg)	44.5	45.4	46.2	42.7	1.43	ns
Milk Protein (g/kg)	34.0	33.6	33.7	33.9	0.37	ns
Milk Solids Yield (Kg)	2.1	2.1	2.0	2.1	0.05	ns
Casein (%)	2.66	2.60	2.60	2.61	0.031	ns
Conc Intake (kg DM)	4.0 ^a	4.0 ^a	3.8 ^{ab}	3.7 ^b	0.08	**
BW Change (Kg)	39	23	12	22	6.6	ns
BCS Change	-0.05	-0.10	-0.13	-0.05	0.071	ns
GDMI (kg DM)	11.9	12.4	13.6	13.2	0.48	0.06

a-b Means within a row not sharing a common superscript differ significantly (P<0.05)

Results (2)

High MUN is an indicator of excess protein in the diet

- Significant time by treatment interaction
- During weeks 1 7 there were differences between treatments

Results (3)

The effects on milk N fractions of offering concentrates differing in crude protein and phosphorus concentration to grazing dairy cows in early lactation

	HPr-HP	MPr-HP	LPr-HP	LPr-LP	S.E.	Sig.
Total Protein						
True Protein	0.941	0.946	0.948	0.950	0.0056	ns
NPN	0.059	0.054	0.052	0.050	0.0056	ns

Results (4)

The effects on milk N fractions of offering concentrates differing in crude protein and phosphorus concentration to grazing dairy cows in early lactation

	HPr-HI	P MPr-HP	LPr-HP	LPr-LP	S.E.	Sig.
Total Protein						
True Protein	0.941	0.946	0.948	0.950	0.0056	ns
NPN	0.059	0.054	0.052	0.050	0.0056	ns
True Protein						
Casein	0.829	0.814	0.822	0.828	0.0049	ns
Whey	0.171	0.186	0.178	0.172	0.0049	ns

Results (5)

The effects on animal N status of offering concentrates differing in crude protein and phosphorus concentration to grazing dairy cows in early lactation

	HPr-HP	MPr-HP	LPr-HP	LPr-LP	S.E.	Sig.
Faecal N (g/kg DM)	32.8ª	31.5 ^b	33.4 ^{ac}	34.1°	0.29	*
Urine N (mmol/l)	(13.9ª	11.8 ^{ab}	9.6 ^b	10.3	0.76	***

a-b Means within a row not sharing a common superscript differ significantly (P<0.05)

Results (6)

The effects on animal P status of offering concentrates differing in crude protein and phosphorus concentration to grazing dairy cows in early lactation

	HPr-HP	MPr-HP	LPr-HP	LPr-LP	S.E.	Sig.
				\frown		
Faecal P (g/kg dm)	6.48 ^a	6.22 ^a	6.29ª	4.90 ^b	0.678	***
Urine P (mmol/l)	0.21	0.24	0.17	0.19	0.009	ns
Blood P (mmol/l)	1.28ª	1.23 ^a	1.33 ^a	0.95 ^b	0.071	***

a-b Means within a row not sharing a common superscript differ significantly (P<0.05)

Blood P in LPrLP dropped below NRC (2001) recommended level of 1.1 mmol/l

Effect of Dietary Protein

- No effect of dietary CP on
 - Milk yield
 - Milk solids

However.....

- Reduction in dietary CP significantly reduced MUN concentration
 - Positive processability implications

Effect of Dietary Phosphorus

- Reduction in dietary P significantly reduced faecal P output
 - Positive environmental implications as reduced excretion to the environment
 - But dietary P dropped below recommended levels when low P diet was offered

Take Home Message

- Low protein supplementary feeds have an important role in grass-based diets
- Knowledge of farm mineral status is essential in order to meet dietary mineral recommendations

- Questions that were asked:
- Q: What was the herbage P conc?
 - » A: 2.7 g/kg
 - » Q: Were the treatment balanced for energy isometrically, and were the PDIN:PDIE levels adequate to support a lactating dairy cow at this stage of lactation?
 - A: yes, all treatment were balanced for energy, with concentrate UFL's ranging from 1.12 – 1.14, and the PDIE:PDIN were above the recommended level.
- Q: Are there any full-lactation studies, why such a short study?
 - » A: Wanted to capture the early lactation period as this is the time that concentrates are routinely offered. It is the aim of Irish grass-based systems to include as much grass in the diet, so when there is enough grass, it becomes the sole constituent of the diet.
- Q: What was the herbage CP?
 - » A: 27%
- Q: Was I recommending that a high-protein conc should be offered, as they produced more milk, even though it wasn't significant?
 - » A: No, it wasn't significant and the reduction in MUN was significant, meaning better suited for processing. Provided there is adequate grass in the diet, there should be enough CP to allow a low CP conc to be given.
- Q: What is the optimum MUN concentration that processors want?
 - A: Studies on high-input systems have recommendations of approx 15 25 mg/100ml, however, not much research on grass-based systems. In terms of processors, the lower the better. We had high levels due to there being high protein in the grass.

