EAAP Annual meeting 2013, Nantes, Session 26b Caroline.Carlstrom@slu.se

Genetic evaluation of in-line recorded milkability from milking parlor and automatic milking systems

Carlström, C¹., Pettersson, G²., Johansson, K³., Strandberg, E.¹, Stålhammar, H⁴., and Philipsson, J¹

¹Dept. of Animal Breeding and Genetics, ² Dept. of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala Sweden, ³Växa Sweden, ⁴Viking Genetics.

Acknowledgements

The authors thank:

- The Swedish Farmers' Foundation for Agricultural Research for their financial support
- DeLaval who enabled contact with dairy herds using AMS.
- The included dairy herds and Växa Sweden, for providing data

Background

- Measures the cows' ability to let down milk and to be completely milked
- Selection against slow milking cows
 - Save time
 - Efficient use of equipment
- Genetic evaluation based on subjective scoring
- Objective observations from AMS
 - high heritabilites and repeatabilites for average flow rate (AFR) and box time (BT)

Objectives

Could data from AMS and CMP be jointly used for genetic evaluation?

- Estimate genetic correlations between
 - milking systems
 - lactations
 - traits

Compare models for analyzing data

Data

□ 72 herds with CPM

- 19 000 cows, 704 000 observations
- Year 2007-2011
- 2 days/month
- Milking time (MT), milk yield (MY)
- □ 19 herds with AMS (DeLaval)
 - 3 800 cows, 2 220 000 observations
 - Year 2004-2009
 - each milking
 - AFR, BT, MY
 - Per udder quarter

Lactation number 1-3

Swedish Holstein (SH) and Swedish Red (SR)

We did:

1(3)

- Genetic correlations in CMP- and AMS-data between:
 - lactations
 - traits

Model included effects of:

- herd-year-season, lactation month, milk yield
 - permanent environment (pe), additve genetic (a), residual (e)

We found:

Lact 1 – Lact 2+3			
AMS	0.93-0.99		
CMP	0.97-0.98		

We did:

1(3)

- Genetic correlations in CMP- and AMS-data between:
 - lactations
 - traits

Model included effects of:

- herd-year-season, lactation month, milk yield
 - permanent environment (pe), additve genetic (a), residual (e)

We found:

	Lact 1 – Lact 2+3	AFR – MT(BT)	MT - BT
AMS	0.93-0.99	-0.931.00	0.93-1.00
CMP	0.97-0.98	-0.940.99	-

2(3)

Genetic correlations between CMP- and AMS-data

Model included effects of:

- herd-year-season, lactation month, lactation no, milk yield
- pe, a, e

We found:

Trait in AMS	Trait in CMP	SH	SR
AFR	AFR	0.97	0.98
MT	MT	0.98	1.00
BT	AFR	-0.98	-0.94
BT	MT	0.99	0.93
AFR	MT	-0.96	-0.99
MT	AFR	-1.00	-0.95

We did:

3(3)

Genetic parameters in joint CMP- and AMS-data

Repeatability model included effects of:

- herd-year-season, lactation month, lactation no, system, milk yield(system)
- pe,a, e

Random regression models included the same effects + 1-4 order of Legendre polynomials of DIM for a and pe We found:

	AFR		MT			
	σ^2_a	h²	Rep.	σ^2_a	h²	Rep.
SH	0.19	0.49	0.83	0.93	0.38	0.71
SR	0.11	0.44	0.77	0.69	0.41	0.77

Conclusions

❑ High genetic correlations between AMS and CMP → potential for joint use of data

- High genetic correlations between lactations, and high repeatabilites within lactation
 - \rightarrow enough to include a few records from 1st lactation
- □ High genetic correlations between traits
 → enough to include either AFR or MT(BT)

