EAAP Annual meeting 2013, Nantes, Session 26b Caroline.Carlstrom@slu.se

Genetic evaluation of in-line recorded milkability from milking parlor and automatic milking systems

Carlström, C ${ }^{1}$., Pettersson, G ${ }^{2}$., Johansson, K ${ }^{3}$., Strandberg, E. ${ }^{1}$, Stålhammar, H^{4}., and Philipsson, J^{1}
${ }^{1}$ Dept. of Animal Breeding and Genetics, ${ }^{2}$ Dept. of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala Sweden, ${ }^{3}$ Växa Sweden, ${ }^{4}$ Viking Genetics.

Acknowledgements

The authors thank:
\square The Swedish Farmers' Foundation for Agricultural Research for their financial support
\square DeLaval who enabled contact with dairy herds using AMS.
\square The included dairy herds and Växa Sweden, for providing data

Background

\square Measures the cows' ability to let down milk and to be completely milked
\square Selection against slow milking cows

- Save time
- Efficient use of equipment
\square Genetic evaluation based on subjective scoring
\square Objective observations from AMS
- high heritabilites and repeatabilites for average flow rate (AFR) and box time (BT)

Objectives

\square Could data from AMS and CMP be jointly used for genetic evaluation?

- Estimate genetic correlations between
- milking systems
- lactations
- traits
\square Compare models for analyzing data

Data

$\square 72$ herds with CPM

- 19000 cows, 704000 observations
- Year 2007-2011
- 2 days/month
- Milking time (MT), milk yield (MY)
$\square 19$ herds with AMS (DeLaval)
- 3800 cows, 2220000 observations
- Year 2004-2009
- each milking
- AFR, BT, MY
- Per udder quarter
- Lactation number 1-3
\square Swedish Holstein (SH) and Swedish Red (SR)
\square Genetic correlations in CMP - and AMS -data between:
- lactations
- traits

Model included effects of:

- herd-year-season, lactation month, milk yield
- permanent environment (pe), additve genetic (a), residual (e)

We found:

	Lact $1-$ Lact $2+3$
AMS	$0.93-0.99$
CMP	$0.97-0.98$

\square Genetic correlations in CMP - and AMS -data between:

- lactations
- traits

Model included effects of:

- herd-year-season, lactation month, milk yield
- permanent environment (pe), additve genetic (a), residual (e)

We found:

	Lact 1-Lact 2+3	AFR - MT(BT)	MT - BT
AMS	$0.93-0.99$	$-0.93-1.00$	$0.93-1.00$
CMP	$0.97-0.98$	$-0.94-0.99$	-

We did:

\square Genetic correlations between CMP - and AMS-data
Model included effects of:

- herd-year-season, lactation month, lactation no, milk yield
- pe, a, e

We found:

Trait in AMS	Trait in CMP	SH	SR
AFR	AFR	0.97	0.98
MT	MT	0.98	1.00
BT	AFR	-0.98	-0.94
BT	MT	0.99	0.93
AFR	MT	-0.96	-0.99
MT	AFR	-1.00	-0.95

\square Genetic parameters in joint CMP - and AMS-data
Repeatability model included effects of:

- herd-year-season, lactation month, lactation no, system, milk yield(system)
- pe,a, e

Random regression models included the same effects

+ 1-4 order of Legendre polynomials of DIM for a and pe We found:

	AFR				MT		
	σ_{a}^{2}	h^{2}	Rep.		σ_{a}^{2}	h^{2}	Rep.
SH	0.19	0.49	0.83		0.93	0.38	0.71
SR	0.11	0.44	0.77		0.69	0.41	0.77

Conclusions

\square High genetic correlations between AMS and CMP
\rightarrow potential for joint use of data
\square High genetic correlations between lactations, and high repeatabilites within lactation
\rightarrow enough to include a few records from $1^{\text {st }}$ lactation
\square High genetic correlations between traits
\rightarrow enough to include either AFR or MT(BT)

