

EAAP 2013 Session 27a

Institut français du cheval et de l'équitation

Effect of energy supplementation on grass intake, performances and parasitism in lactating mares

Claire COLLAS, Géraldine FLEURANCE, William MARTIN-ROSSET, Jacques CABARET, Laurence WIMEL and Bertrand DUMONT

claire.collas@clermont.inra.fr

From intensive farming practices to agroecology ...

Equine production has a low profitability due to high feeding costs

→ supplementation of grazing animals with high dietary requirements

≥ inputs + maintenance of production

Natural & renewable resources

Better use of grass

Sustainable farming systems

(∠ costs, more autonomous, ∠ environmental footprint)

Lack of knowledge about grass utilization

It remains to determine:

The necessity and nutritional consequences of a supplementation for grazing horses with high requirements

Objectives

Characterize the effect of energy supplementation at pasture on:

- 1 the voluntary intake of lactating saddle mares
- 2 the mare and foal performances
- 3 the level of parasite infestation of mares

Energy supplement: BARLEY (commonly used in horse farming)

EXPERIMENTAL DESIGN AND METHODS

Experimental design

16 lactating saddle mares

(identical winter diet)
BCS close to 3 at the beginning of the experiment

8 supplemented mares

experimentally infested (5000 L3 cyathostomes)

Barley: 60% of energy needs for lactation

8 non-supplemented mares

experimentally infested (5000 L3 cyathostomes)

Test 03/2012 Groups equally balanced regarding to:

intake capacity / foaling date / parasitic sensitivity level /

BCS / LW

EPG 02/2012

- Rotational grazing from June to September 2012 (4 months)
 - 3 grazing cycles on fertile permanent pastures

Main measurements

Intake:

- total feces collection (4 consecutive days, 1 time/cycle)

intake = faecal production / (1 - digestibility)

Digestibility was estimated with faecal CP content (Mésochina et al. 1998)

Correction to take into account the part of barley in faecal production (DM and CP dig. of barley)

Animal performances:

- mare and foal weighing (1 time/week in June/July, 1 time/15 days in August/September)
- withers height and cannon bone width on foals aged of 11 months old
- BCS of mares (1 time/month)

Parasitic excretion:

- individual coproscopy (faecal egg count) of every mares (1 time/15 days)

VOLUNTARY INTAKE OF LACTATING SADDLE MARES

All the results are presented by mean ± se Letters are significant differences between cycles

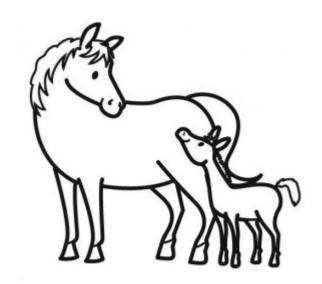
group*cycle: 0.0008

Grass dry matter intake

Variable	Grazing cycle	Suppl. group	NS group	р
Grass DM intake	1	23.5 (± 1.5) ^a	22.6 (± 1.3) ^a	ns
(gDM/kgLW)	2	22.7 (± 1.1) ^a	25.4 (± 0.6) b	ns
	3	21.7 (± 0.9) ^a	28.0 (± 1.0) b	**

Grass DM intake of Suppl. mares stayed stable whereas the one of NS mares increased between 1st and 3rd cycle

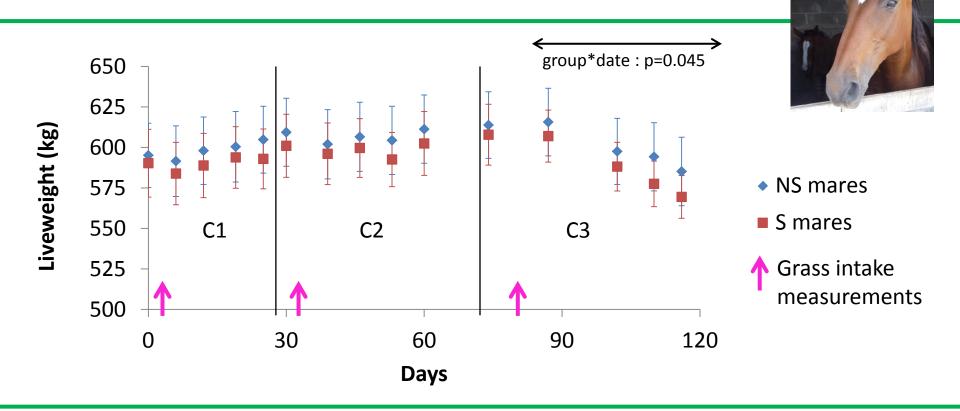
3rd cycle: grass DM intake of NS mares > Suppl. mares


group*cycle: 0.0002

Total digestible dry matter intake

Variable	Grazing cycle	Suppl. group	NS group	р
Total DDM intake	1	17.0 (± 1.0) ab	13.4 (± 0.8) ^a	*
(gDDM/kgLW)	2	16.8 (± 0.7) ^a	15.2 (± 0.4) b	ns
	3	15.1 (± 0.4) b	16.1 (± 0.6) b	ns

Total DDM intake of NS mares increased between 1st and 3rd cycle


3rd cycle: total DDM intake of NS mares = Suppl. mares

2 MARE AND FOAL PERFORMANCES

All the results are presented by mean ± se


Mare performances

No liveweight differences between S and NS mares (from 1st cycle to the start of 3rd cycle)

BCS between 3 and 3.5

Foal performances

Measurements on foals aged of **11** months old:

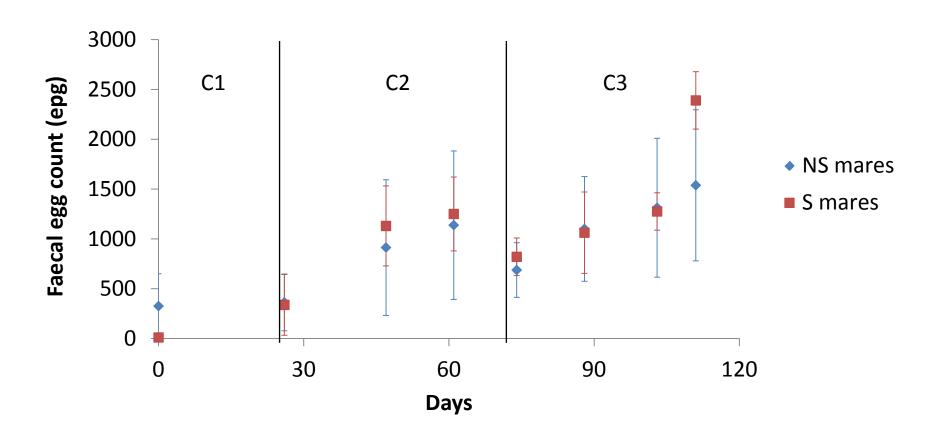
- Withers height: group*age: p>0.05

- Cannon bone width: group*age: p>0.05

No differences between S and NS group

Growth in accordance with references

(Trillaud-Geyl et al. 1990)


LEVEL OF PARASITE INFESTATION OF MARES

All the results are presented by mean ± se

Parasite infestation

Suppl. vs. NS: p= 0.71

group*date: p=0.07

Energy supplement did not help supplemented mares to better regulate their parasite burden

Parasitism

- It's possible that:
 - grazing conditions were not enought limiting
 - experimental infestation was not sufficient

to observe an energy supplement effect

(sucking lambs: Prache et al. 1990, 1992)

To conclude

The behavioural flexibility of non-supplemented mares led them to increase grass consumption, and to ensure a good foal growth and conformation under our grazing conditions

Barley supplementation did not increase mare resistance to parasitism

Other kinds of supplementation,
as plants with condensed tanins (secondary metabolites)
as plants with condensed tanins (secondary metabolites)
could improve the parasite state of horse
(an experiment will be set up in November 2013)

Thank you!

French Horse and Riding Institute and Carnot Institute for Animal Health for their financial support

Institut français du cheval et de l'équitation

Experimental station team of IFCE and the students C. Ceglowski and M. Duclouet for their participation to data collection

Organisers of this 64th EAAP Annual Meeting

Grazing characteristics

	1 st cycle	2 nd cycle	3 rd cycle
Dates	06/06 to 05/07	06/07 to 19/08	20/08 to 02/10
Stocking rate (LU/ha)	3.1	1.5	1.5
Height (cm) Start End	52.2 (± 8.3) ^a 13.3 (± 1.8) ^a	26.5 (± 5.1) b 7.5 (± 0.9) b	11.9 (± 1.4) ^C 5.3 (± 0.5) ^C
Biomass (kgDM/al/day)	50.2 ^a	77.8 <mark>b</mark>	74.5 <mark>b</mark>
Quality (%DM) CP NDF	12.5 (± 0.5) ^a 45.3 (± 2.4) ^a	11.2 (± 0.6) ab 43.8 (± 1.4) a	10.1 (± 0.6) b 47.0 (± 3.5) a

20

Grazing time

	MARES		FOALS	
	NS group	S group	NS group	S group
1 st cycle	15.2 (± 0.2) ^a	15,1 (± 0.5) ^a	6.2 (± 0.5) ^e	6,0 (± 0.6) ^e
2 nd cycle	14.0 (± 0.3) b	14,3 (± 0.7) b	8.7 (± 0.3) ^f	8,6 (± 0.4) ^f
3 rd cycle	16.6 (± 0.5) ^C	15,7 (± 0.3) ^C	11.7 (± 0.9) g	11,2 (± 09) g

cycle: ***

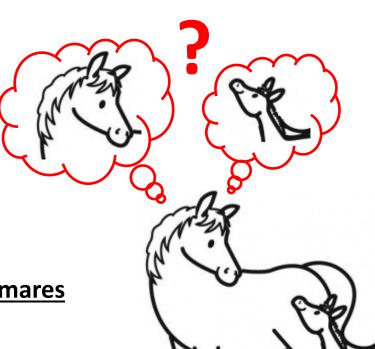
cycle*group: ns

cycle: ***

cycle*group: ns

No differences of daily grazing time between S and NS group within each grazing cycle

Total nutrient intake


• UFC (UFC)

MADC (g)

	NS mares	S mares
1 st cycle	96.6 %	122.7 %
2 nd cycle	120.2 %	133.7 %
3 rd cycle	144.3 %	137.1 %

	NS mares	S mares
1 st cycle	83.6 %	101.2 %
2 nd cycle	86.1 %	96.7 %
3 rd cycle	89.4 %	89.9 %

Resource allowance trade-off: foal favored?

The same resource allowance strategy for Suppl. and NS mares

Weight loss of mares

=> Hyp:

in grass disponibility, accessibility and quality

→ in nematode infestation

Growth & grazing time identical for the 2 groups of <u>foals</u>

=> Hyp:

equal milk production by NS and S mares