

University of Natural Resources and Applied Life Sciences, Vienna Department of Sustainable Agricultural Systems

Participatory identification of breeding objective traits for two goat breeds of Ethiopia

S. Abegaz^{1,2}, M. Wurzinger¹, J. Sölkner¹

¹BOKU-University of Natural Resources and Life Sciences, Vienna, Austria ² Gondar Agricultural Research Center, Gondar, Ethiopia

Introduction

- Goats have a significant roles for Ethiopian smallholder farmers
- Goat genetic improvement programs are undeveloped
- A few attempts of goat genetic improvement through upgrading of local breeds with exotic breeds
- Local genotypes are more adaptive and suitable for the existing environment

Introduction

- Need of designing appropriate breeding program for sustainable genetic improvement
- Community based breeding program for low input system
- Community participation at all stages of the breeding program is the peculiar feature of community based breeding program
- Designing of breeding programs should consider the trait preferences of the farmers

Objective

 Identify the breeding objective traits of two indigenous goat breeds for designing of community based breeding programs

Study sites

Site one (Metema)

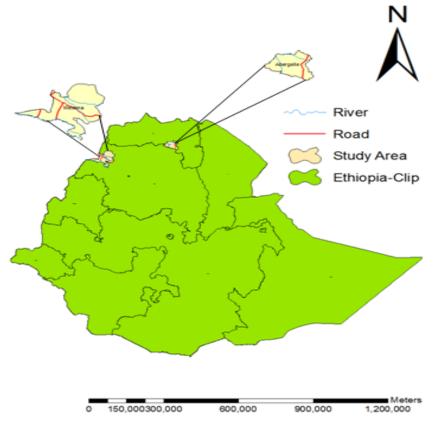
Temperature: 22 to 28°C

Location: 900 km northwest of Addis Ababa

Rainfall: 850 to 1100 mm

Agro ecological zone: Sub moist low land

Site two (Abergelle)


Altitude :1340 to 2200 m

Temperature: 16 to 27°C

Location: 720 km north of Addis Ababa

Rainfall: 350 - 700 mm

Agro ecology: Dry mid altitude

Breeds description

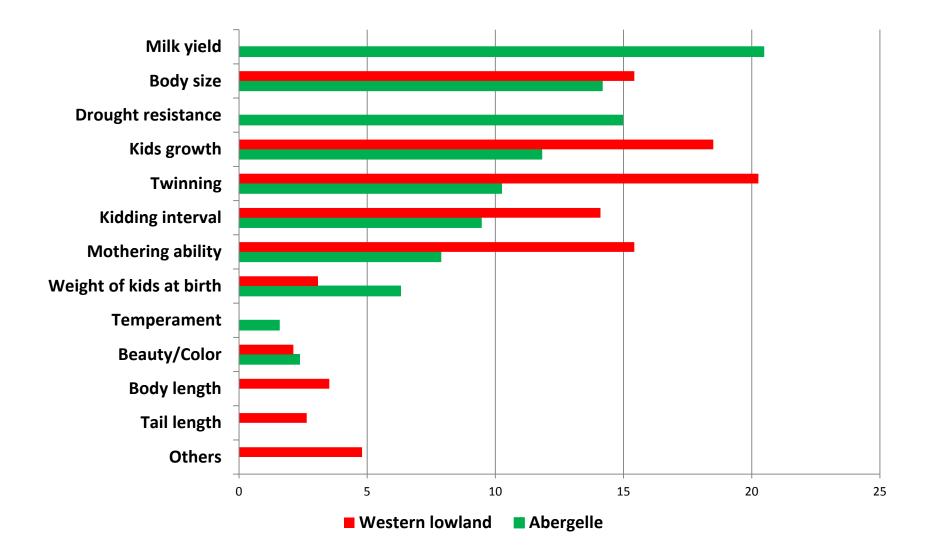
Production system

- Traditional mixed farming system
 - In Metema crop production is more dominant
 - In Abergelle goat production is more dominant
 - Average flock size
 - In Metema 10 goats per household
 - In Abergelle 50 goats per household

Method

- Own flock ranking experiment
 - 60 households from Metema and 30 households from Abergelle areas were visited
 - They were asked to rank their three best and the worst breeding does with in their flock
 - The reasons of ranking and life history of the ranked animals were inquired and recorded

Data analysis



• Frequency procedure of SAS

For the relative importance of the preferred traits

- glm procedure of SAS
 - For the traits provided as life history and live weight of the ranked animals

Results: List of preferred traits identified by farmers

Results: Means of the traits for Abergelle does

	Rank				
	1 st	2 nd	3 rd	Worst	
Age (years)	6.3 ^a	4.9 ^{cb}	5.9 ^{ab}	4.7 ^c	
Body weight(kg)	32.3 ^a	30.1 ^b	30.4 ^b	25.5 ^b	
kidding	5.4 ^a	3.7 ^{cb}	4.4 ^b	3.1°	
kids born	6.7 ^a	4.3 ^b	4.6 ^b	3.1°	
kids weaned	6.4 ^a	3.9 ^b	3.9 ^b	1.3 ^c	
Twinning rate	1.2 ^a	1.1 ^a	1.0 ^c	0.9 ^c	
Milk yield(I)	0.6 ^a	0.5 ^{ba}	0.4 ^b	0.2 ^c	

RESULTS: Means of the traits for Western lowland does

	Rank				
	1 st	2 nd	3 rd	Worst	
Age (Year)	5.5 ^a	3.9 ^b	2.9 ^c	2.6 ^c	
Body weight(Kg)	34.0 ^a	31.0 ^b	27.2 ^c	24.9 ^c	
kidding	5.8 ^a	3.7 ^b	2.8 ^c	2.2 ^c	
kids born	10.7 ^a	6.1 ^b	4.1 ^c	2.8 ^c	
kids weaned	9.8 ^a	5.2 ^b	3.1 ^c	1.6 ^d	
Twinning rate	1.8 ^a	1.6 ^b	1.4 ^c	1.2 ^c	

Conclusions

- Diverse attributes as selection criteria were identified
- Variations in the relative importance of breeding objective traits between the different production system
- This method can serve as a tool in identification of breeding objective traits in the areas no recording scheme is developed

Acknowledgements

- Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH)
- Participant farmers in the study

Thank you for your attention!!