Abstract 17111 Jakob Sehested

Phosphorus excretion in dairy cows is not affected by forage particle size or rumen degradable protein

L. Puggaard, P. Lund & J. Sehested

Department of Animal Science

Introduction

- Inevitable fecal loss (IL) of phosphorus (P) in dairy cows is estimated to 1 g P / kg DMI.
- It was hypothesised that IL of P would be reduced by dietary factors that:
- 1) reduce saliva secretion
- 2) reduce rumen microbial production

Objective

To measure the effect of

- 1) chewing activity and hereby production of saliva
- 2) rumen degradable protein and hereby microbial production and incorporation of P

	Treatment				<i>P</i> -value		
	CONTROL LOW-N SHORT SEN		SEM	LOW-N vs. CONTROL	SHORT vs. CONTROL		
Feed intake, kg DM/d	21.6	21.0	23.8	0.6	NS	0.02	
Milk Yield, kg ECM/d	27.9	28.0	30.4	1.3	NS	NS	
Chewing time, min/kg DM	36.3	-	28.0	1.5	_	0.005	
Chewing time, min/d	754	-	653	42	-	0.10	
Plasma P _i , mmol/L	0.97	1.02	0.86	0.07	NS	NS	
P intake, g/d	53.1	51.9	58.5	0.4	NS	0.02	
P in feces, g/d	35.7	37.1	42.0	1.4	NS	0.003	
P _i in urine, g/d	0.033	0.034	0.038	0.003	NS	NS	
P in milk, g/d	24.6	24.2	26.5	1.3	NS	NS	
P balance, g/d	-7.3	-9.5	-10.1	1.3	NS	NS	

on the fecal excretion of P in lactating dairy cows	Digestibility of P, %	32.6	28.3	28.1	2.0	NS	NS
fed below P requirement.	Digestibility of OM, %	70.0	67.2	65.1	0.7	0.01	<0.001

Materials and methods

- Design and treatments: 3 dietary treatments during 16 d period. Treatments varied in forage (grass hay) particle size (FPS) and rumen degradable protein (RDP) content;
 - > **CONTROL**: FPS 30 mm; RDP optimised by adding urea
 - > LOW-N: FPS 30 mm; RDP below requirements, no urea
 - > SHORT: FPS 3 mm; RDP optimised by adding urea

Animals: 36 Holstein cows 222 ± 102 d in milk.

 627 ± 7 kg of BW

Diets: Fed *ad libitum,* 2.5 g P/kg DM, based on the same feeds (% of DM): compound feed (30), corn silage (31), sugar beet molasses (19), grass hay (20)

Fecal excretion and digestibility: 6 grab samples during d 15 and 16, INDF used as marker

Results and discussion

Negative P balances and low plasma P confirmed that P was fed below requirement, indicating that effects on fecal P excretion mainly originated from variations in IL of P.

Daily chewing time tended to be lower whereas feed and P intake and fecal P excretion was increased with SHORT and none of these were affected by LOW-N, as compared to CONTROL. Digestibility of organic matter was reduced with SHORT and LOW-N as compared to CONTROL.

Milk yield was not affected by treatments.

Conclusion and implications

Urinary excretion: Semi-quantitative collection by hourly hand-stimulation during 6 h at d 16

Milk: Recorded and sampled at d 15 and 16

Blood sampling: Venopunture in the tail at d 15

Chewing activity: Jaw movements recorded by a data logger on a head halter for 24 h at d 13 and 14

Reduced forage (grass hay) particle size (FPS) and rumen degradable protein (RDP) content did not reduce fecal P excretion.

The results of the present study do not support the concept that fecal loss of endogenous P is affected by FPS or by rumen degradable protein supply and thus rumen microbial P incorporation.

Acknowledgements: Funding was provided by the Directorate for Food, Fisheries and Agri Business (#3304-VMP-05-005; Copenhagen, Denmark), and the Faculty of Agricultural Sciences, Aarhus University.