

Development of a dynamic mechanistic model of dairy cattle capable of predicting milk production, dry matter intake and Body Condition Score change

E.Ruelle^{1, 2}, L. Delaby³, M. Wallace² and L. Shalloo¹

¹ Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork,

² School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4.

³ INRA, UMR 1348, PEGASE, Domaine de la Prise, 35590 Saint Gilles, France.

Overview

- Biological systems are complex and dynamic in nature
- Modelling allows experimentation of key system components
 - Low cost
 - Timely
 - Effective manor
- Many interchanging components require:
 - Complex mechanistic, stochastic, dynamic, farm models capable of replicating the system

Objective

- To develop a dynamic, mechanistic cattle model
 - Calf and Heifer Model
 - Stages of Growth
 - Cow Model
 - Intake
 - Milk production
 - Condition Score Change
 - Output Indicator
 - Profitability
 - GHG emissions

- Submodel:
 - Intake
 - Growth
 - Increase of body weight

• Bulls are sold at the age of...

- Submodel
 - Intake
 - Growth (BW)
 - Fertility (Puberty)

- Farmer Decisions
 - Insemination
 - Date/Age/Weight

- SubModel:
 - Intake (INRA 2010)
 - Growth (BW) (age <40 month)
 - Fertility
 - Return in heat
 - Insemination success
 - Embryonic death
 - Dystocia
 - BCS and Milk production
- Farmer action
 - Insemination
 - Ending lactation

User Input

User Input

Internal evaluation

Simulation

- Simulation with different:
 - Genetic potential
 - 30 kg of standard milk
 - 40 kg of standard milk
 - 50 kg of standard milk
 - Herbage allowance
 - 14kg of MS
 - 18kg of MS
 - 22kg of MS
 - Concentrate suplementation
 - 0kg
 - 4kg

Impact of the genetic index

Impact of the HA

Impact of concentrate

Conclusion and next step

- The model is operating in a logical manner;
 - variation of genetic potential
 - herbage allowance
 - concentrate supplementation
- Next step: the creation of the whole farm model
 - Simulating grazing
 - Individual representation of the paddocks
 - Additional output:
 - Total herbage mass intake
 - Pre and post grazing height
- Finally to integrate with a grass growth model

