Plasma mineral metabolism and milk minerals in Modenese cows compared to Italian Friesian cows <u>Abeni F.¹</u>, Petrera F.¹, Dal Prà A.¹,

Franceschi P.², Malacarne M.², Summer A.² Catillo G.³, Napolitano, F.³

 ¹Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per le Produzioni Foraggere e Lattiero-casearie, via Porcellasco, 7, 26100 Cremona,
 ²Dipartimento di Scienze degli Alimenti, Università di Parma, via del Taglio 10, 43126 Parma,
 ³Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per la Produzione delle Carni e il Miglioramento Genetico, via Salaria 31, 00015 Monterotondo (Roma), Italy; <u>fabiopalmiro.abeni@entecra.it</u>

Introduction

Agro-biodiversity

Role of autochthonous breeds:

- essential to culture, interaction with the environment, and local economy in Europe
 - possess valuable traits (resistance to diseases; adaptation to severe conditions and poor quality feeds; <u>specific qualitative features of their product</u>)

Safeguard strategies: are currently under way to repopulate the rural areas with the local breeds to preserve biodiversity in livestock (Gandini et al., 2010)

Introduction

Modenese or Bianca Val Padana breed:

- native from Emilia Romagna region (Italy), product of several crossbreeding between indigenous breeds; dual purpose (milk and meat)
- medium frame size (breed standards adult female cows: 125-140 cm height; 650 kg average BW), white coated
- medium-low milk yield (4700 kg in 305 d, with 3.4% of protein and 3.3% of fat)
 - population size ~ 650 cows, included in the endangered-maintained breeds list (FAO, 2000), 60% in herds together with Italian Friesian cows
 - good functional traits (longevity, fertility, robustness, adaptability to climate conditions)
- advantages in milk components

(Duclos and Hiemstra, 2010)

Minerals in milk

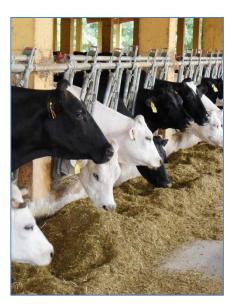
□ Milk phosphate

- (a) free inorganic P_i(HPO₄²⁻ and H₂PO₄⁻)
 (b) esterified phosphate (including casein phosphate)
 (c) phosphate associated with Ca in the casein micelles *
- P transported from circulation to mammary cells as free inorganic P_i
 Milk Ca
 - (a) free ionized Ca
 - (b) Ca associated with P_i in casein micelles *
 - c) Ca associated with citrate and phosphate
 - free ionized concentration of Ca in milk (~ 3 mM) is greater than that of plasma suggesting that active transport must be taking place (Shennan, 1998)

 \Box h² was 0.57 and 0.62 for Ca and P respectively (van Hulzen et al., 2009)

 to compare Modenese and Italian Friesian cows for their mineral metabolism and the possible relationships with macro-minerals concentrations in milk

to characterize the milk mineral fractions for a possible valorisation of the Modenese production in Italy



Material & Method: Animals and feeding

11 Modenese (M) and 14 Italian Friesian (IF) pluriparous cows (see Table 1) raised and managed together in the same herd (housed in a free-stall barn), fed the same total mixed ration, once daily

fresh drinking water available

milking: twice a day (at 0500 and 1700 h) in a milking parlour

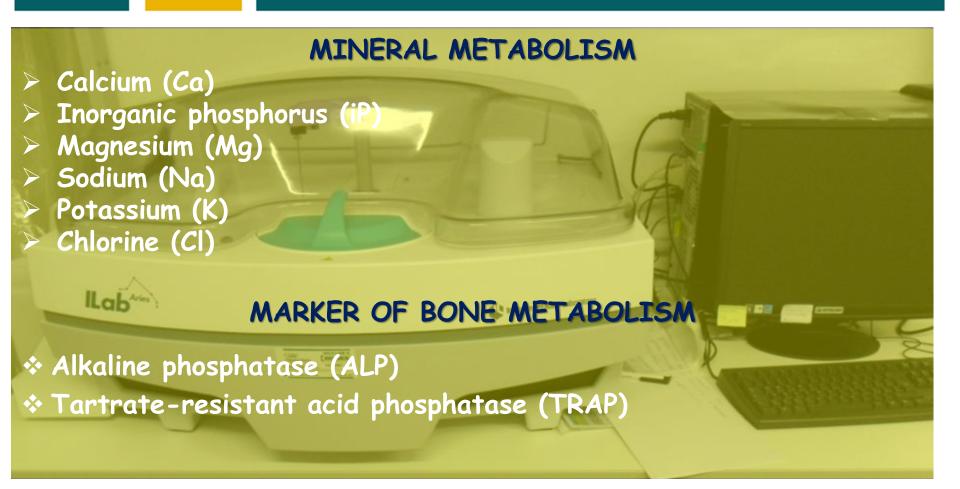
Characteristics of the cows in the present study

	-	-
	MO	IF
Lactation number	3.00 ± 1.41	3.07 ± 1.73
Age at calving (mo)	<u>49.1 ± 14.9</u>	57.4 ± 24.5
Previous effective milk yield (kg)	5265 ± 1148	9556 ± 1930
	(309.1 ± 43 days)	(373 ± 62 days)
Previous conventional milk yield (kg)	5119 ± 1088	8376 ± 1388

BCS

On a 5-point scale (1=emaciated, 5= obese, scored in 0.25 point intervals) (Ferguson et al., 1994)

BLOOD


From jugular vein, using evacuated tubes (10 ml, Li-heparin) At 8 and 21 wk of lactation, in the morning, before feed distribution Centrifuged at 3000 g x for 20' at $4^{\circ}C \Rightarrow$ plasma stored at -20°C

MILK

48 samples (22 from MO and 26 from IF cows) collected at 8 and 21 wk of lactation during the morning milking Milk yield was individually recorded

Plasma metabolites analysis

Analyzed at 37°C by an automated clinical analyzer (ILAB Aries, Instrumentation Laboratory, Lexington, MA) using commercial kits (Instrumentation Laboratory, Lexington, MA).

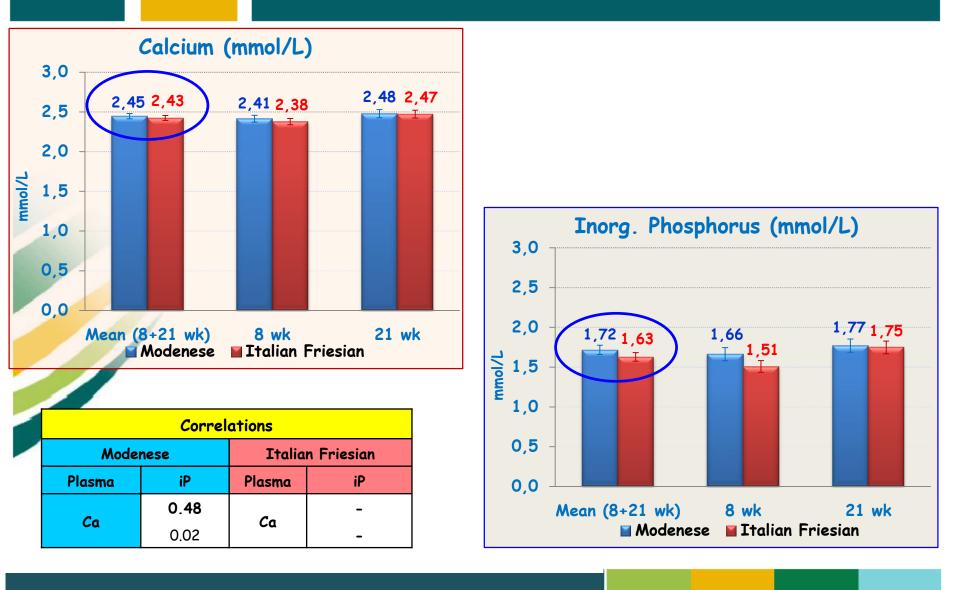
Fat, lactose, protein and casein content in milk: infrared analysis (Milko-Scan FT 6000, Foss Electric, DK-3400 Hillerød, Denmark). Milk minerals: ✓ Total Ca in milk and soluble Ca in milk ultrafiltrate (cut off 30,000 D): by atomic absorption spectroscopy (AAS). ✓ Total P in milk, soluble P in milk ultrafiltrate (cut off 30,000 D) and total acid-soluble P in milk (after treatment with TCA 120 g/l) : by colorimetric method (Allen, 1940). ✓ Distribution of Ca and P fractions: calculated according to White and Davies (1958). **Rennet-coagulation parameters:**

measured at 35 °C (McMahon and Brown, 1982) using a Formagraph (Foss Electric, DK-3400 Hillerød, Denmark)

pH: with a potentiometer

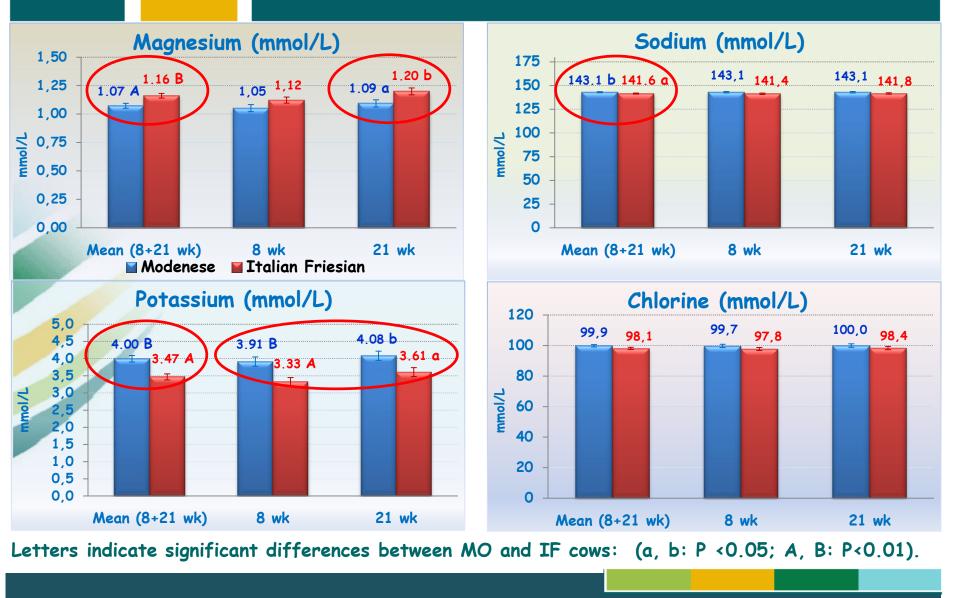
Titratable acidity: by titration with 0.25 M-NaOH (Soxhlet-Henkel method)

Statistical analysis


- NORMAL DISTRIBUTION TEST: PROC UNIVARIATE (SAS, 2009) with the Shapiro-Wilk test
 - The variables that did not fit the normal distribution were re-tested after logtransformation to match the assumption for a parametric analysis; their results are presented in the original scale after re-transformation

BCS, blood, and milk data were analysed as repeated measures by a mixed model, with breed (B), week from calving (T), and their interaction (B × T) as main factors, with cow within breed considered as random
 COVARIANCE STRUCTURE (according to the AIC) the one which best fitted the data among SIM, CS, ANTE(1), AR(1), UN

Means ± s.e. (c.i. for re-transformed data); significant = P < 0.05; trend:= 0.05 > P < 0.10</p>



Results: BLOOD

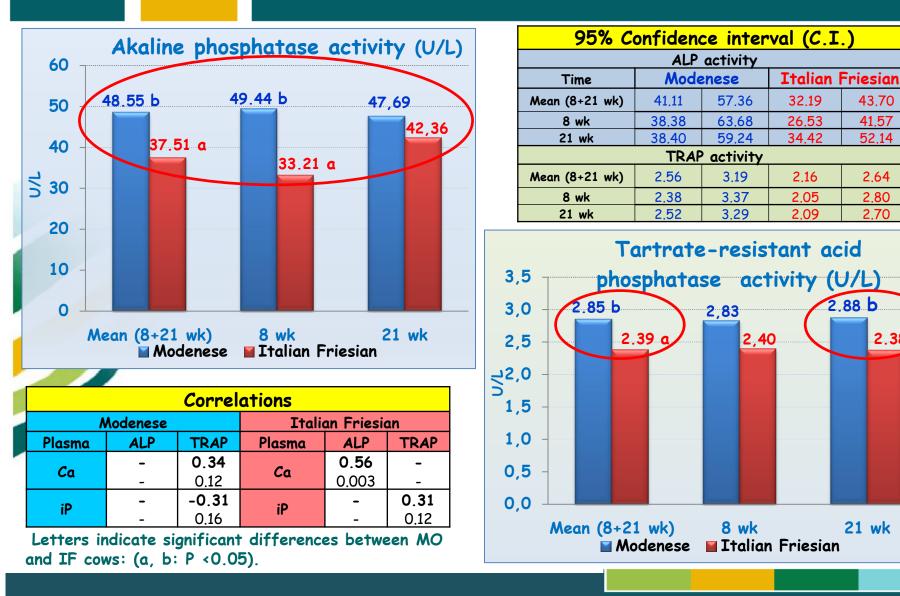
Results: BLOOD

Results: BLOOD

43,70

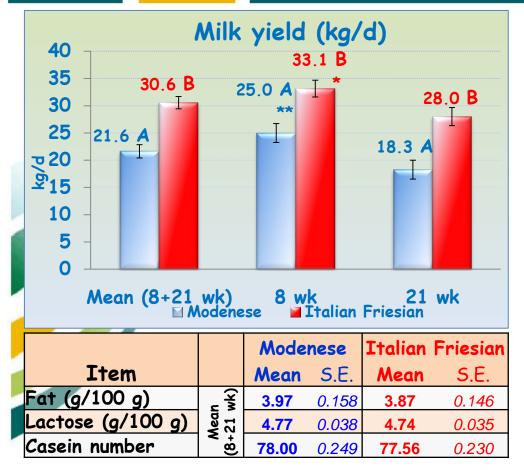
41.57

52.14

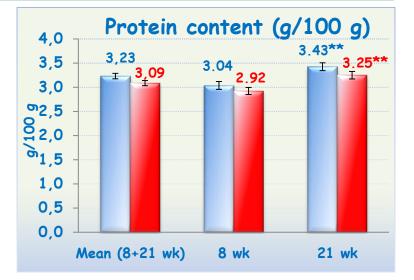

2.64

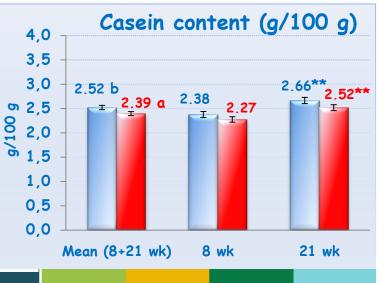
2.80

2.70


2,38 0

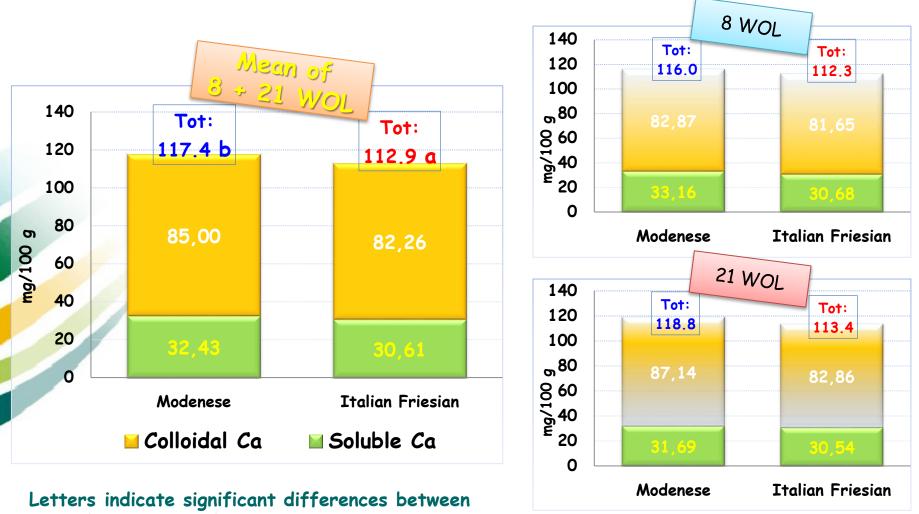
21 wk




Results: MILK

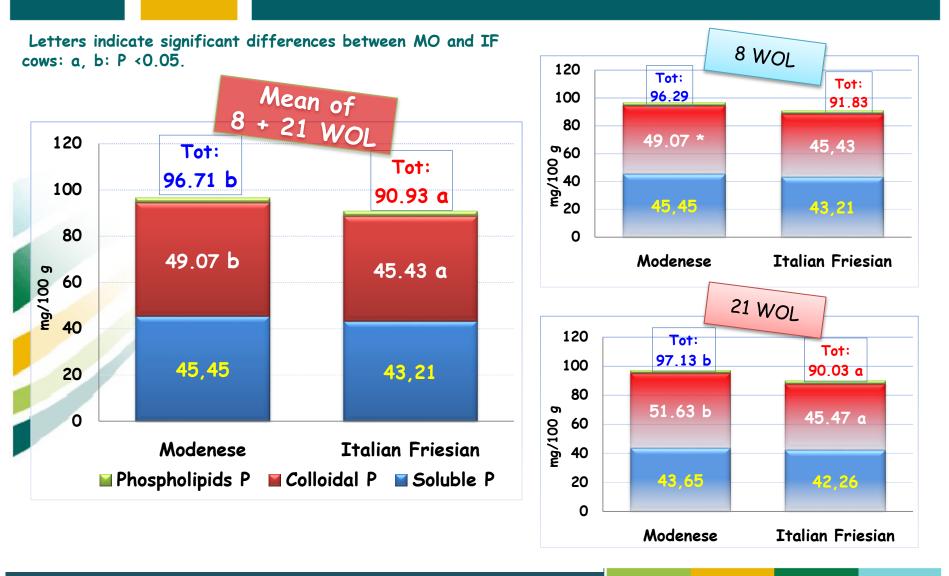
Letters indicate significant differences between MO and IF cows: (a, b: P <0.05; A, B: P<0.01). Astanisks indicate significant differences (within bread) between 8

Asterisks indicate significant differences (within breed) between 8 WOL and 21 WOL: (* P<0.05; ** P<0.01).



	Rennet coagulation properties									
	Item	WK	Mod	en	ese	Italian Friesian				
	TIEM	VV N	Mean		S.E.	Mean	S.E.	•		
	рН	8	6.70		0.019	6.72	0.017	7		
		21	6.73		0.019	6.73	0.019	9		
	Titrat. acid.	8	3.45	Ь	0.101	3.14	a 0.090	0		
	(°SH/50 mL)	21	3.38	(b)	0.101	3.13	(a) 0.097	7		
	Clotting time,	8	16.2	(b)	1.677	20.3	(a) 1.395	5		
	r (min)	21	21.7	(*)	2.250	19.1	1.90	1		
	Card firming	8	3.47		0.399	3.82	0.42	7		
	time, K ₂₀ (min)	21	3.42		0.652	3.29	0.46	1		
	Curd firmness	8	31.70		4.645	24.85	4.074	4		
	a 30 (mm)	21	21.81		5.997	32.33	5.55	2		

Letters indicate significant differences between MO and IF cows: (a, b: P <0.05; (a), (b): 0.05 < P< 0.10). Asterisks indicate significant differences between 8 WOL and 21 WOL: (*) 0.05<P<0.10.


MILK CALCIUM CONTENT

MO and IF cows: a, b: P < 0.05.

MILK PHOSPHORUS CONTENT

Correlations: Milk-Plasma

Modenese		Plasma						Plasma			
		iP	Ca	ALP	TRAP	Italian Friesian		iP	Ca	ALP	TRAP
	Phosphorus	0.31 0.158	<u>0.70</u> 0.0003	-	-		Phosphorus	-	-	0.32 0.110	-
SNO	Total P	<u>-0.60</u>	-	0.34	0.34		Total P	<u>-0.40</u>	-	-	-
concentrations	excreted daily	0.003	-	0.126	0.124		excreted daily	0.044	-	-	-
ntr	Soluble P	0.46	0.69	0.41	-	ntr	Soluble P	-	-	-	-
C C		0.032	0.0004	0.061	-	Ce		-	-	-	-
con	Colloidal P	-	-	-	-		Colloidal P	-	-	-	-
٩	Calcium	-	0.43	-	-	Calcium	-	-	0.34	-	
ק		-	0.048	-	-		-	-	0.091	-	
and	Total Ca excreted daily	<u>-0.65</u>	<u>-0.35</u>	-	-	p	Total Ca	<u>-0.45</u>	-	-	-
S		0.001	0.107	-	-	Ca	excreted daily	0.020	-	-	-
Milk	Soluble Ca	-	-	-	-	Milk	Soluble Ca	-0.49	-	-	-
Z		-	-	-	-		Soluble Ca	0.012	-	-	-
	Colloidal Ca	-	0.39	-	-	Colloidal Ca	Colloidel Co	0.36	-	-	-
		-	0.073	-	-		conoldal ca	0.072	-	-	-

Correlations: Milk-Milk

Modenese		Phosphorus	Soluble P	Colloidal P	Italian Friesian		Phosphorus	Soluble P	Colloidal P
	Phosphorus	1	0.68 0.0006	0.63 0.002		Phosphorus	1	0.74 ≺.0001	0.60 0.001
S	Total P	-		-	្ត	Total P	0.57	0.45	-
tior	excreted daily	-	-	-	P concentrat	excreted daily	0.002	0.020	-
ntrat	Soluble P	-	1	-		Soluble P	-	1	-
concentrations	Colloidal P	-	-	1		Colloidal P	0.60 0.001	-	1
and P	Calcium	<u>0.59</u> 0.004	-	0.55 0.0079		Calcium	<u>0.56</u> 0.003	0.62 0.0006	-
	Total Ca	-	-	-		Total Ca	0.44	-	-
Ca	excreted daily	-	-	-	Ca		0.026	-	-
Milk	Soluble Ca	-	-	-0.38	Milk	Caluble Ca	-	0.37	-
2		-	0.082	2	Soluble Ca	-	0.060	-	
	Colloidal Ca	<u>0.59</u> 0.004	-	0.68 0.0005		Colloidal Ca	<u>0.40</u> 0.045	0.36 0.074	-

- Plasma Ca and iP concentrations (MO = IF) were not mirrored in milk Ca and P contents (MO > IF)
- Marked differences in ALP and TRAP only partly mirrored in milk minerals content
 - Differences in plasma Mg and K not related to diet concentration: different metabolism/requirement or genetic regulation
 - Milk titratable acidity difference more pronounced than expected from milk proteins

- The differences in plasma ALP and TRAP activities need further study to explain their meaning
- The differences in milk mineral contents need further study to understand the reasons for a preferential secretion of Ca and P in MO: polymorphisms in membrane proteins involved in their transport? (a study on SNPs in these 2 breeds is in progress)

Acknowledgment Research supported by the GENZOOT project (MiPAAF)