Strategies for inversion of the additive relationship matrix among genotyped animals

P. Faux and N. Gengler

University of Liege, Gembloux Agro-Bio Tech, Animal Science Unit

Introduction: The case of A_{22} vs. A

$\checkmark A_{22}=$ subpart of A whose inversion is required, e.g. in ssGBLUP

Introduction: The case of A_{22} vs. A

$\checkmark A_{22}=$ subpart of A whose inversion is required, e.g. in ssGBLUP

Introduction: The case of A_{22} vs. A

$\checkmark A_{22}=$ subpart of A whose inversion is required, e.g. in ssGBLUP

Introduction: The case of $\mathrm{A}_{22} \mathrm{vs}$. A

\checkmark The inverse of \mathbf{A} is computed as a sum of vector products (Henderson, 1976)

Introduction: The case of $\mathrm{A}_{22} \mathrm{vs}$. A

\checkmark The inverse of \mathbf{A} is computed as a sum of vector products (Henderson, 1976)

$$
\mathbf{A}_{(i)}^{-1}=\left(\mathbf{T}_{A(i)}^{-1}\right)^{\prime} \mathbf{D}_{A(i)}^{-1} \mathbf{T}_{A(i)}^{-1}
$$

$$
\mathbf{T}_{A(i)}^{-1}=\left[\begin{array}{cc}
\mathbf{T}_{A(i-1)}^{-1} & 0 \\
-\mathbf{b}_{(i)}^{\prime} & 1
\end{array}\right]
$$

$$
\mathbf{D}_{A(i)}^{-1}=\left[\begin{array}{cc}
\mathbf{D}_{A(i-1)}^{-1} & 0 \\
\mathbf{0}^{\prime} & \alpha_{(i)}
\end{array}\right]
$$

Introduction: The case of A_{22} vs. A

$\checkmark A_{22}=$ subpart of A whose inversion is required, e.g. in ssGBLUP

Sparsity in the inverse factor of A_{22}

\checkmark Example: An animal and its parents

Sparsity in the inverse factor of A_{22}

\checkmark Example: An animal and its parents

Issues and Objective

\checkmark How sparse is the inverse of A_{22} ?
... How sparse is the inverse factor $\left(\mathbf{T}^{-1}\right)$ of \mathbf{A}_{22} ?
\checkmark How a putative sparsity could be used in computation of the inverse?
\rightarrow Main objective: To avoid useless computations

Sparsity in the inverse factor of A_{22}

\checkmark How to deal with more complex cases?
\checkmark By a comprehensive search in the pedigree \checkmark «SP Algorithm »
\checkmark Explores pedigree brances and apply simple rules
\checkmark Uses only pedigree and incidence vector
\checkmark Returns a symbolic inverse factorization

Sparsity in the inverse factor of A_{22}

\checkmark Some performances on different sizes of \mathbf{A}_{22} :

Strategies to take sparsity into account

1. Successive construction of the inverse

How to get b?

$$
\begin{array}{ll}
\text { 1. } & \mathbf{b}_{(i)}=\mathbf{A}_{22(i-1)}^{-1} \mathbf{A}_{22(i-1)}(:, 1: i-1) \\
\text { 2. } & \mathbf{A}_{22(i-1)} \mathbf{b}_{(i)}=\mathbf{A}_{22(i-1)}(:, 1: i-1)
\end{array}
$$

Strategies to take sparsity into account

1. Restricting the product only to elements of \mathbf{b} different from 0

$$
\mathbf{b}_{(i)}=\mathbf{A}_{22(i-1)}^{-1} \mathbf{A}_{22(i-1)}(:, 1: i-1) \rightarrow \mathbf{x}=\mathbf{Z y}
$$

Strategies to take sparsity into account

2. Solving a linear system of lower size

$$
\underset{\substack{\mathbf{A}_{22(i-1)} \mathbf{b}_{(i)} \\ \underset{y y}{*}=0}}{ }=\mathbf{A}_{22(i-1)}(:, 1: i-1) \rightarrow \mathbf{Z x}=\mathbf{y}
$$

Strategies to take sparsity into account

Strategies to take sparsity into account

\checkmark Order of $\mathrm{A}_{22}=$ Number of genotyped animals
\checkmark Depends on the pedigree (depth, lines, ...)

Strategies to take sparsity into account

3. Storing the inverse of \mathbf{A}_{22} from time to time and updating this inverse only for recent animals

$$
\mathbf{A}_{22(t+1)}^{-1}=\left[\begin{array}{cc}
\mathbf{A}_{22(t)}^{-1} & \mathbf{0} \\
\mathbf{0}^{\prime} & 0
\end{array}\right]+\alpha_{(x)}\left[\begin{array}{c}
-\mathbf{b}_{(x)} \\
1
\end{array}\right]\left[\begin{array}{ll}
-\mathbf{b}_{(x)}^{\prime} & 1
\end{array}\right]
$$

Strategies to take sparsity into account

Strategies to take sparsity into account

Take-home messages

1. Sparsity pattern of the inverse of A_{22} can be set up without matrix computations, even for large matrices

Take-home messages

1. Sparsity pattern of the inverse of A_{22} can be set up without matrix computations, even for large matrices
2. Using sparsity reduces time for inversion, if that inversion uses the inverse factor

Take-home messages

1. Sparsity pattern of the inverse of A_{22} can be set up without matrix computations, even for large matrices
2. Using sparsity reduces time for inversion, if that inversion uses the inverse factor
3. As the order of A_{22} increases, inversion shrinks to solve multiple small linear systems that are identified by SP algorithm

Acknowledgements

\square

- Fonds National de la Recherche Luxembourg (FNR)
- CONVIS s.c.
- Association Wallonne de l'Elevage (AWE)
- S. Vanderick, F. Colinet (Gembloux Agro-Bio Tech)

