An inversion-free method to compute genomic predictions using an animal model approach

Jørgen Ødegård¹, Per Madsen² & Theo Meuwissen³ ¹AquaGen AS ²Aarhus University ³Norwegian University of Life Sciences

One-step genomic evaluation

- Combines the genomic and pedigree-based relationship matrices into a single unified matrix
 - Used in an equivalent animal model
- Phenotypic data from genotyped and ungenotyped animals can be utilized jointly

One-step genomic animal model (Aguillar et al. 2010, Christensen & Lund 2010)

• Standard Henderson's mixed model equations (HMME-1)

•
$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \mathbf{H}^{-1}\lambda \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$
$$\lambda = \frac{\sigma_{e}^{2}}{\sigma_{g}^{2}}$$

•
$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix} = \begin{bmatrix} G_{\omega} & G_{\omega}A_{11}^{-1}A_{12} \\ A_{21}A_{11}^{-1}G_{\omega} & A_{21}A_{11}^{-1}G_{\omega}A_{11}^{-1}A_{12} + A_{22} - A_{21}A_{11}^{-1}A_{12} \end{bmatrix}$$

- G_{ω} = the genomic relationship matrix (or some function of it)
- The inverse of **H** has a simple structure:

$$H^{-1} = \begin{bmatrix} H^{11} & H^{12} \\ H^{21} & H^{22} \end{bmatrix} = \begin{bmatrix} G_{\omega}^{-1} - A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix} + A^{-1} = \begin{bmatrix} G_{\omega}^{-1} + A^{0} & A^{12} \\ A^{21} & A^{22} \end{bmatrix}$$
$$A^{0} = A^{11} - A_{11}^{-1}$$

Equations of ungenotyped animals are identical to the pedigree-based equations

Limitations of HMME-1

- Requires G_{ω}^{-1}
 - Cannot be set up directly
 - May not be of full rank
 - Inversion of big-sized matrices are computationally demanding May eventually be impossible if dimension >100,000

• Requires
$$A^0 (= A^{11} - A^{-1}_{11})$$

- A₁₁⁻¹ is hard to compute unless all ancestors are included among the genotyped animals
- A⁰ can be set up directly if ancestors are included among the genotyped

Weighted least squares (WLS) method

- The WLS equations:
- $\widehat{\boldsymbol{\beta}} = \left(X'V^{-1}X \right)^{-1}X'V^{-1}y$
- $\hat{\mathbf{g}} = \sigma_g^2 \mathbf{H} \mathbf{Z}' \mathbf{V}^{-1} (\mathbf{y} \mathbf{X} \widehat{\boldsymbol{\beta}}) = \sigma_g^2 \mathbf{H} \mathbf{Z}' \hat{\mathbf{s}}$
 - $\mathbf{V} = \mathbf{Z}\mathbf{H}\mathbf{Z}'\sigma_g^2 + \mathbf{I}\sigma_e^2$
 - $\hat{s} = V^{-1}(y X\hat{\beta})$, i.e. $X\hat{\beta} + V\hat{s} = y$
- $\begin{bmatrix} \mathbf{X'X} & \mathbf{X'ZHZ'\sigma_g^2} \\ \mathbf{X} & \mathbf{ZHZ'\sigma_g^2 + I\sigma_e^2} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\boldsymbol{s}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'y} \\ \mathbf{y} \end{bmatrix}$

Alternative Henderson's mixed model equations (HMME-2) (Henderson, 1984)

- $\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{H}\mathbf{Z}'\mathbf{X} & \mathbf{H}\mathbf{Z}'\mathbf{Z} + \mathbf{I}\lambda \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{g}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{H}\mathbf{Z}'\mathbf{y} \end{bmatrix}$
- The method does not require the inverse relationship matrix
- The entire **H** must be set up
- Method implemented in the DMU software using both direct and iterative solvers

Hybrid MME (HMME-3)

- The genetic effects are split into genotyped and ungenotyped animals $\hat{g} = \begin{bmatrix} \hat{g}_1 \\ \hat{g}_2 \end{bmatrix}$
 - Equations for genotyped animals are similar to HMME-2
 - Equations for ungenotyped animals are as in HMME-1

•
$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z}_{1} & \mathbf{X}'\mathbf{Z}_{2} \\ \mathbf{G}_{\omega}\mathbf{Z}_{1}'\mathbf{X} & \mathbf{G}_{\omega}\mathbf{Z}_{1}'\mathbf{Z}_{1} + (\mathbf{G}_{\omega}\mathbf{A}^{0} + \mathbf{I})\lambda & \mathbf{G}_{\omega}\mathbf{A}^{12}\lambda \\ \mathbf{Z}_{2}'\mathbf{X} & \mathbf{A}^{21}\lambda & \mathbf{Z}_{2}\mathbf{Z}_{2} + \mathbf{A}^{22}\lambda \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widehat{\mathbf{g}}_{1} \\ \widehat{\mathbf{g}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{G}_{\omega}\mathbf{Z}_{1}'\mathbf{y}_{1} \\ \mathbf{Z}_{2}'\mathbf{y}_{2} \end{bmatrix}$$

•
$$\mathbf{A}^{0} = \mathbf{A}^{11} - (\mathbf{A}_{11})^{-1}$$

The entire **H** is not needed

Limitations of the one-step approach

- All approaches need A_{11}^{-1} (or A^0)
- Can be set up directly if H₁₁ is expanded with relationships of ungenotyped ancestors

$$H_{11} = \begin{bmatrix} H_{00} & H_{01} \\ H_{10} & G_{\omega} \end{bmatrix}$$

How to expand H₁₁?

• Imputation of missing genotypes

Not always possible

 $H_{11} = \begin{bmatrix} G_{\omega(00)} & G_{\omega(01)} \\ G_{\omega(10)} & G_{\omega(11)} \end{bmatrix}$

How to expand H₁₁?

Set up H₁₁ through linkage analysis

- Pedigree information will be used to incorporate ungenotyped ancestors of genotyped animals
- Genomic IBD matrix

$$H_{11} = \begin{bmatrix} G_{LA(00)} & G_{LA(01)} \\ G_{LA(10)} & G_{LA(11)} \end{bmatrix}$$

How to expand H₁₁?

- Fill inn ungenotyped ancestors using pedigree relationships
 - Simple, but not necessarily the best

$$H_{11} = \begin{bmatrix} A_{00} & A_{01} \\ A_{10} & G_{\omega} \end{bmatrix}$$

Is the one-step approach appropriate?

- Parents genotyped and offspring ungenotyped
 - Infers the most likely relationship structure among ungenotyped offspring
 - Appropriate
- Parents ungenotyped and offspring genotyped
 - The one-step will modify founder relationships such that they explain the genomic relationships
- Co-segregation of loci among relatives will cause deviations from pedigree relationships
 - Occur spontaneously
- The one-step approach explains effects of Mendelian sampling and linkage by relationships between distant founders
 - Unjustified and will likely give bias

Example: Inappropriate one-step analysis

 Assume the following pedigree of two paternal half-sibs

Example: Inappropriate one-step analysis

The paternal half-sibs (4&5) are genotyped:

$$\mathbf{G}_{\boldsymbol{\omega}} = \begin{pmatrix} 1 & 0.3 \\ 0.3 & 1 \end{pmatrix}$$

The slightly increased relationship can be attributed to co-segregation of linked loci. However, the one-step relationship matrix modifies the ancestral relationships (matrix sorted from oldest to youngest)

1.016	0.008	0.008	0.520	0.520
0.008	0.993	0.015	0.493	0.027
0.008	0.015	0.993	0.027	0.493
0.520	0.493	0.027	1.000	0.300
0.520	0.027	0.493	0.300	1.000
	1.016 0.008 0.008 0.520 0.520	1.0160.0080.0080.9930.0080.0150.5200.4930.5200.027	1.0160.0080.0080.0080.9930.0150.0080.0150.9930.5200.4930.0270.5200.0270.493	1.0160.0080.0080.5200.0080.9930.0150.4930.0080.0150.9930.0270.5200.4930.0271.0000.5200.0270.4930.300

Implications

- Solving large-scale MME without inverting \mathbf{G}_{ω} is possible
- Expanding $\mathbf{G}_{\boldsymbol{\omega}}$ with ungenotyped ancestors may be needed
 - For solving large-scale MME (using HMME-3)
 - For obtaining proper predictions of genetic effects
- Linkage analysis may be used to construct G_{ω} including ungenotyped ancestors

