Haplotype-assisted genomic evaluations in Nordic Red Dairy Cattle

Timo Knürr, Ismo Strandén, Minna Koivula, Gert Pedersen Aamand, Esa A. Mäntysaari

EAAP 2013, Nantes, France Wednesday 28th September 2013

Background

- Poor predictive ability of SNP data in admixed populations originating from numerous base breeds like Nordic Red Dairy Cattle
 - inability of SNP to trace genetic relationships (IBS≠IBD) in heterogeneous populations
 - inconsistencies of LD between SNP and QTL
- Haplotypes may be more useful than SNP to recover genetic relationships and LD

Objective of the study

- Improve the prediction accuracy by use of IBD information in haplotypes of chromosomal segments
- Criterium: validation test reliability

Outline of statistical procedure

Pre-selection of markers	 Genome scan with BayesB to detect QTL signals Using SNP genotypes Ranking of signals using absolute effect size 		
Construction of haplotype blocks	 Chromosomal segments around pre-selected SNP Using flanking markers C C A C A 		
Estimation of haploblock variances	BayesATo achieve correct weighting in multilocus model		
Estimation of haplotype effects for prediction	 Solutions of MME Inclusion of a polygenic pedigree-based effect 		

Methods: Estimation of haploblock variances

- BayesA used to estimate variance of effects in each haplotype block $\sigma_{gm}^2 = Var(g_m^{hap})$
- Estimates used to give differing weights in the evaluation model

Methods: Estimation of haplotype effects and prediction

DRP =
$$\mu + a + \sum_{m=1}^{750/1500} (g_{m,1}^{hap} + g_{m,2}^{hap}) + \varepsilon$$

- Solutions of MME with
 - proportion ω of the genetic variance assigned to pedigree $Var(a) = \omega \hat{\sigma}_a^2 \mathbf{A}$
 - rest (1- ω) assigned to weighted haploblocks $Var(g_m^{hap}) = (1-\omega)\hat{\sigma}_a^2 \cdot \hat{\sigma}_{gm}^2 / S$

$$\text{GEBV} = \hat{a} + \sum_{m=1}^{750/1500} \left(\hat{g}_{m,1}^{\text{hap}} + \hat{g}_{m,2}^{\text{hap}} \right)$$

Data

- DRP and effective daughter contributions (=weights of observations) from Nordic Cattle Genetic Evalution (February 2013)
- 38 194 SNP (after editing) on autosomes from Illumina Bovine SNP50 BeadChip - imputation of missing genotypes and phasing with BEAGLE v3.3 (Browning & Browning 2009)

	Production traits: milk, protein, fat	Fertility
Reference bulls (born 1971-2005)	4250	4422
Candidate bulls (born 2006-2008)	516	551
Total	4766	4973

Pre-selection (BayesB)			
750 markers			
or 1500 markers			
Using reference bulls			
Haplotype blocks of size	1 SNP		
3 SNP			
or 5 SNP			
Estimation of haploblock variances (BayesA) and haplotype effects (MME)			GBLUP
			All 38 194 SNP
Using reference bulls			Using reference bulls
Prediction of GEBV			
For candidate bulls			

Validation

Results –Validation test reliabilities *R*² for milk

Results – Validation test reliabilities R^2

Results – Validation test reliabilities R²

750 blocks of SNP-size

1500 blocks of SNP-size

GBLUP

Conclusions

- With valid marker pre-selection:
 - at best a small advantage over GBLUP
 - number of SNP in haplotype blocks has little impact
 - single SNP perform as well as haplotype blocks (because of using SNP in BayesB for pre-selection?)
- Results for non valid pre-selection suggest that there may be huge potential for improvement:
 - Different pre-selection method needed to pick up "good" markers/avoid "bad" markers
 - But: set of "good"/"bad" markers may change over time

Acknowledgements

• Phenotypic and pedigree data was obtained from the Nordic Cattle Genetic Evaluation NAV

 Genotypes of animals from the Nordic Genomic Selection–project (Viking Genetics, Aarhus University, NAV, FABA, Svensk Mjölk current Växa Sverige)