Allele frequency changes by hitch-hiking in genomic selection programs

Huiming Liu Anders C Sørensen, Theo HE Meuwissen, Peer Berg

Department of molecular biology and genetics QGG group Aarhus University Denmark

August 28, 2013

Huiming Liu Anders C Sører Allele frequency changes by hitch-hiking in genomic selection programs

Outline of this presentation

1. Background

- 2. Simulation and Methods
- 3. Results and Discussion
- 4. Conclusion

프 + + 프 +

< 🗇 🕨

э

Background

Simulation and Methods Results and Discussion Conclusion Introduction inbreeding due to hitch-hiking

main purpose of the study

→ Ξ > < Ξ >

э

Introduction

▶ Genetic improvement ← increasing the favourable allele frequencies

Background

Simulation and Methods Results and Discussion Conclusion Introduction inbreeding due to hitch-hiking main purpose of the study

∃ ≥ >

Introduction

- Genetic improvement \leftarrow increasing the favourable allele frequencies
- The size of the increase \leftarrow allele frequency and accuracy of selection

Introduction inbreeding due to hitch-hiking main purpose of the study

4 E b

3

Introduction

- ▶ Genetic improvement ← increasing the favourable allele frequencies
- The size of the increase \leftarrow allele frequency and accuracy of selection

Introduction inbreeding due to hitch-hiking main purpose of the study

- E - E

Introduction

- ▶ Genetic improvement ← increasing the favourable allele frequencies
- The size of the increase \leftarrow allele frequency and accuracy of selection
- ► GS ∖ pedigree inbreeding compared to BLUP

Background

Simulation and Methods Results and Discussion Conclusion Introduction inbreeding due to hitch-hiking main purpose of the study

イロト イポト イヨト イヨト

э

Is pedigree inbreeding a good indicator for true inbreeding?

Introduction inbreeding due to hitch-hiking main purpose of the study

< 🗇 🕨

글 🕨 🖌 글 🕨

Is pedigree inbreeding a good indicator for true inbreeding?

1. Pedigree inbreeding is an expectation ...

Introduction inbreeding due to hitch-hiking main purpose of the study

< 🗇 🕨

B 🕨 🖌 B 🕨

Is pedigree inbreeding a good indicator for true inbreeding?

- 1. Pedigree inbreeding is an expectation ...
- 2. It depends on which generation is considered as the founder generation

Introduction inbreeding due to hitch-hiking main purpose of the study

∃ ≥ >

Is pedigree inbreeding a good indicator for true inbreeding?

- 1. Pedigree inbreeding is an expectation ...
- 2. It depends on which generation is considered as the founder generation
- 3. It ignores systematic changes in allele frequencies due to **selection** and **hitch-hiking** (Pedersen et al. 2010)

Introduction inbreeding due to hitch-hiking main purpose of the study

∃ >

Is pedigree inbreeding a good indicator for true inbreeding?

- 1. Pedigree inbreeding is an expectation ...
- 2. It depends on which generation is considered as the founder generation
- 3. It ignores systematic changes in allele frequencies due to **selection** and **hitch-hiking** (Pedersen et al. 2010)

Solution: runs of homozygosities (ROH)

Introduction inbreeding due to hitch-hiking main purpose of the study

∃ >

Is pedigree inbreeding a good indicator for true inbreeding?

- 1. Pedigree inbreeding is an expectation ...
- 2. It depends on which generation is considered as the founder generation
- 3. It ignores systematic changes in allele frequencies due to **selection** and **hitch-hiking** (Pedersen et al. 2010)

Solution: runs of homozygosities (ROH)

Further question: Is inbreeding reduced by GS?

Background

Simulation and Methods Results and Discussion Conclusion Introduction inbreeding due to hitch-hiking main purpose of the study

- ∢ ≣ →

э

E ▶.

< 🗇 🕨

- 1. allele frequencies
- 2. reduction of heterozygosity at linked loci due to hitch-hiking
- 3. inbreeding measured by ROH and pedigree
- 4. impact of heritability

Simulation design Data analysis

★ Ξ ► ★ Ξ ►

< 🗇 🕨

э

Outline of this presentation

- 1. Background
- 2. Simulation and Methods
- 3. Results and Discussion
- 4. Conclusion

Simulation design Data analysis

 $\langle \Box$

100 males and 100 females mutation 2.5 X 10⁻⁵ Simulate loci 10,000 per chr

÷

Simulation design Data analysis

・ロト ・個ト ・モト ・モト

QTL and markers

Simulation design Data analysis

QTL and markers

Simulation design Data analysis

- A 🖻 🕨

Hitch-hiking and inbreeding

- ▶ Allele frequency changes $\triangle p_t$ were scaled by $\sqrt{p_{t-1} * (1 p_{t-1})}$
- ► level of hitch-hiking = $\frac{\sigma^2(\triangle p_{LN})}{\sigma^2(\triangle p_{SN})}$
 - ► numerator ← indirect selection and random sampling
 - ▶ denominator ← random sampling
- ► F_{ped} and F_{ROH}
- ▶ Tukey's HSD (*p* < 0.05)

Outline of this presentation

- 1. Background
- 2. Simulation and Methods
- 3. Results and Discussion
- 4. Conclusion

→ Ξ → < Ξ →</p>

< 🗇 🕨

э

variance of change in allele frequencies of neutral loci on chr 5 (drift)

문 🕨 문

Level of Hitch-hiking on chr 1-4

rate of inbreeding

Table 2 - The rate of inbreeding based on pedigree ($\Delta F_{ped'}\%)$ and runs of homozygosity (ΔF_{ROH}). (SE<0.05%)

	selection criterion			
Rate of inbreeding	PS	BL	GBLUP	BLUP
ΔF_{ped^*}	0.67	1.30	1.88	2.01
	0.88	1.26	1.50	1.65
$\Delta F_{roh10}^{\dagger}$	0.68	1.43	2.15	2.05
	0.89	1.40	1.74	1.77

*The rate of inbreeding was calculated based on the first 8 generations.

[†] The number followed by ROH represents the number of markers involved for each window.

Outline of this presentation

- 1. Background
- 2. Simulation and Methods
- 3. Results and Discussion
- 4. Conclusion

프 + + 프 +

< 🗇 🕨

э

Conclusion

- ▶ The neutral variation is substantially shaped by the hitch-hiking effects.
- pedigree inbreeding reduces from BLUP to GBLUP, but not for genomic inbreeding.
- compared to GBLUP, Bayesian lasso:
 - 1. less pedigree inbreeding \leftarrow more accurate estimate of Mendelian sampling term
 - 2. less hitch-hiking \rightarrow less genomic inbreeding
- genomic control of inbreeding
 - 1. optimum contribution selection (Sonesson et al. 2012)
 - 2. put higher weight on rare favorable alleles (Goddard, 2009)

< 🗇 🕨

Acknowledgments

Thank you for your attention!

イロン イ団と イヨン イヨン

æ

Huiming Liu Anders C Sører Allele frequency changes by hitch-hiking in genomic selection programs