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Introduction

Application of artificial neural networks (ANNs) to genome-
enabled predictions of complex traits
» Massive genomic and phenotypic data is available

» Complex traits may be affected by various gene interactions
v'e.g. dominance, epistasis

» Methods used in genomic selection field are mostly linear
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» It may be possible to increase accuracy using more general models
» e.g. non-parametric models, machine learning methods



Introduction — Artificial neural networks

What are artificial neural networks?
» An extremely simplified model of the human brain
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» To mimic physical aspects of the human brain these artificial neurons are
organized in networks with several layers

Inputs Hidden layer Output layer



Introduction — Artificial neural networks

y, = pu+ £(X)+e

Any complex continuous function can be exactly represented in the following form
- Kolmogorov’s theorem

F(X)= (X X)) = ig(z/ﬂt . (%)
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Linear or nonlinear Weights Linear or nonlinear
transformation transformation of inputs
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» This theorem can be completely represented as an ANN

v" ANNSs act as general function approximators

v' ability to capture underlying functions between input and outputs
without explicitly defining a fixed model

v not limited to linear problems



Introduction — Artificial neural networks

Prediction can be done in two steps:

1. Inputs transformed non linearly in the hidden layer

2. Outputs from the hidden layer are combined to obtain predictions
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from hidden layer

Il To obtain predictions a so called training phase is needed



Introduction — Artificial neural networks

Aim

Assessing the influence of the network architecture, the training parameters and

different genomic covariates as well as the phenotypes on the predictive
performance of an ANN




Materials and methods — Data basis

Three cattle data sets

Data set Animals in Number of Type of phenotype
analysis markers after records
quality
control
Simmental cattle bulls 3,341 39,344 SNPs DYD of milk traits
Holstein Friesian bulls 2,303 41,995 SNPs DRP of milk traits
Holstein Friesian dams 777 41,718 SNPs YD of milk traits
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Non-linear activation function in the hidden layer

1.2

set up a feed-forward neural network with the following parameters:

Supervised learning rule: mater of itk Jpes 8
v' Back-propagation algorithm with early stopping iy g

hidden activation function: tanh
putput activation function: tanh

Program ertten In C++ initial weights sampled in: [-0.

1,0.1]

Assessing the predictive ability via cross-validation

v 5-fold (20 random repetitions)

v’ average Pearson’s correlation coefficient between predicted and true

phenotypic value in the testing sets




Materials and methods — Fitting the network

Target:

DYD, DRP, YD of three milk traits (milk yield, protein yield, fat yield)

Genomic information:

|. Raw marker genotypes (SNPs) > X
II. Genomic relationship matrix > G
lll. Principle component score matrix > ubD

Feature scaling: V. — 1
y; = ——

Maxy



Average Pearson's comelation coefficient of CY runs
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Results — Predicting milk yield

100 individual cross-validation runs
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Results — Predicting milk yield

e 100 individual cross-validation runs
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Results — Predicting milk yield

e 100 individual cross-validation runs
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100 individual cross-validation runs
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Results — Predicting fat yield

100 individual cross-validation runs
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Conclusion

The network architecture

» Has only a slight effect on the predictive ability of future outcomes when
dimension-reduction inputs are used

» Has a large effect on the prediction performance when the raw marker
matrix is used

v' maybe a numerical problem?

The type of genomic input

» Has a large effect on the predictive ability

v because of model complexity

» The principle component score matrix (UD) seems to be a suitable input

v" not loosing to much information of the original matrix while
simultaneously reducing model complexity



Conclusion

The milk traits

» There is only a slight difference in prediction of future outcomes

v' because of a similar genetic background of the traits?

The number of animals in the analyses

» Maybe has an effect on the predictive ability as well as the pre-correction
of the target trait

v" but hard to distinguish between both

In summary

Artificial neural networks can be applied to genome-enabled predictions but
feature selection methods are highly recommended
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Back-propagation algorithm
with early stopping (generalization)

» Minimization of a
sum-of-squares error function
using a gradient descent
optimization

v’ Threshold = 103

v’ Learning rate = 0.002

v’ Learn delay = 0.03

v Weights = random [-0.1;0.1]
v’ Feature scaling
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