

Faculty of Agricultural and Nutritional Science CAU

Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

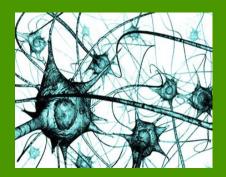
Artificial neural networks for genome-enabled prediction of milk traits in Simmental cattle

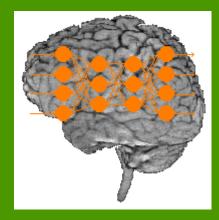
Anita Ehret¹,

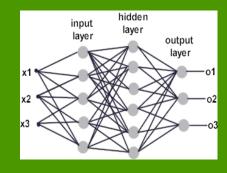
David Hochstuhl² and Georg Thaller¹

 ¹ Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
²Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University, Leibnizstr. 15, 24098 Kiel, Germany

> 64th Annual EAAP Meeting Nantes, France August 26th to 30th, 2013







Application of artificial neural networks (ANNs) to genomeenabled predictions of complex traits

- Massive genomic and phenotypic data is available
- Complex traits may be affected by various gene interactions
 - ✓ e.g. dominance, epistasis
- Methods used in genomic selection field are mostly linear

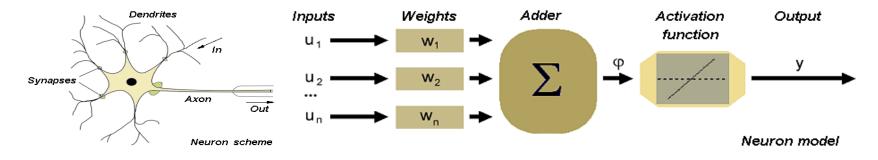
$$y_i = \mu + \sum_{j=1}^p x_{ij}\beta_j + e_i$$

- > It may be possible to increase accuracy using more general models
 - > e.g. non-parametric models, machine learning methods

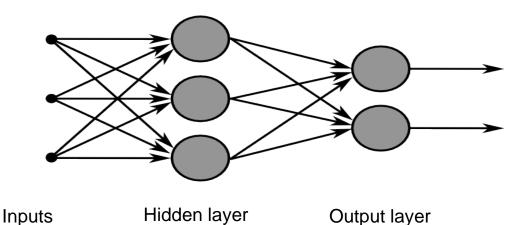
Introduction – Artificial neural networks

What are artificial neural networks?

> An extremely simplified model of the human brain

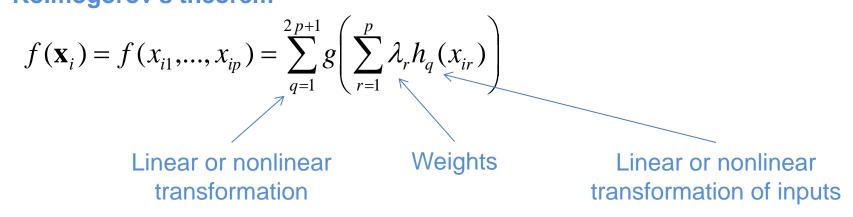


> To mimic physical aspects of the human brain these artificial neurons are organized in networks with several layers



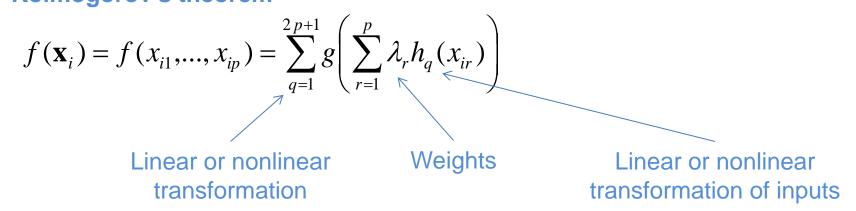
$$y_i = \mu + f(\mathbf{x}_i) + e_i$$

Any complex continuous function can be exactly represented in the following form → Kolmogorov's theorem



$$y_i = \mu + f(\mathbf{x}_i) + e_i$$

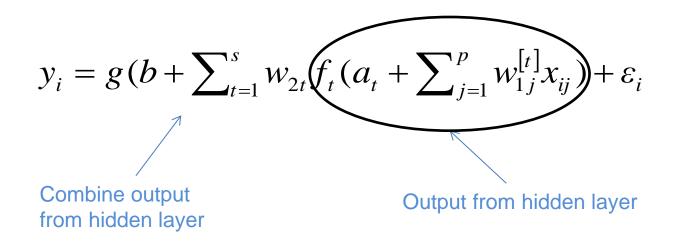
Any complex continuous function can be exactly represented in the following form → Kolmogorov's theorem



- This theorem can be completely represented as an ANN
 - ✓ ANNs act as general function approximators
 - ✓ ability to capture underlying functions between input and outputs without explicitly defining a fixed model
 - $\checkmark\,$ not limited to linear problems

Prediction can be done in two steps:

- 1. Inputs transformed non linearly in the hidden layer
- 2. Outputs from the hidden layer are combined to obtain predictions



!!! To obtain predictions a so called training phase is needed

Prediction can be done in two steps:

1. Inputs transformed non linearly in the hidden layer

Aim

Assessing the influence of the network architecture, the training parameters and different genomic covariates as well as the phenotypes on the predictive performance of an ANN

Combine output from hidden layer

Output from hidden layer

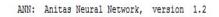
!!! To obtain predictions a so called training phase is needed

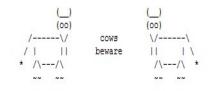
Three cattle data sets

Data set	Animals in analysis	Number of markers after quality control	Type of phenotype records	
Simmental cattle bulls	3,341	39,344 SNPs	DYD of milk traits	
Holstein Friesian bulls	2,303	41,995 SNPs	DRP of milk traits	
Holstein Friesian dams	777	41,718 SNPs	YD of milk traits	

Materials and methods – Network design

- Single Hidden Layer Feed Forward ANN
- 1 20 neurons in the hidden layer
- > Non-linear activation function in the hidden layer
- Supervised learning rule:
 - ✓ Back-propagation algorithm with early stopping
- Program written in C++





set	up a feed-forward neural	net	work with	the	following	parameters:
	number of hidden layers	:	1			
	input neurons	:	3341			
	hidden neurons	:	30			
	output neurons	:	1			
	hidden activation function:		tanh			
	output activation function:		tanh			
initial weights sampled in:			[-0.1,0.1	1]		

Assessing the predictive ability via cross-validation

- ✓ 5-fold (20 random repetitions)
- ✓ average Pearson's correlation coefficient between predicted and true phenotypic value in the testing sets

Target:

DYD, DRP, YD of three milk traits (milk yield, protein yield, fat yield)

Genomic information:

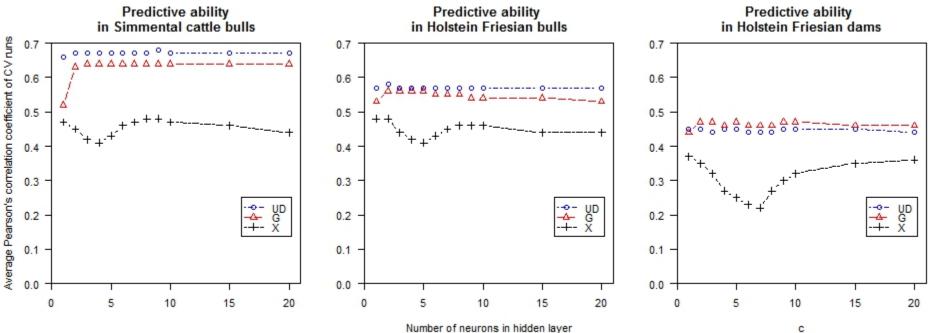
I. Raw marker genotypes (SNPs) \rightarrow XII. Genomic relationship matrix \rightarrow GIII. Principle component score matrix \rightarrow UD

Feature scaling:

$$y_i^* = \frac{y_i - \mu_y}{Max_y}$$

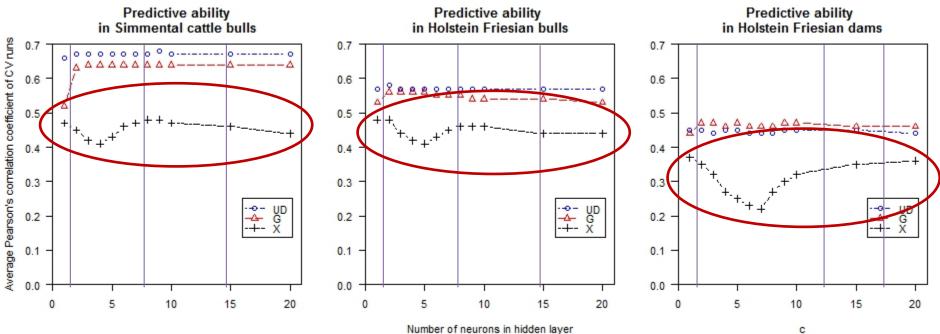
Results – Predicting milk yield

- 100 individual cross-validation runs
- Impact of
 - Network architecture
 - Genomic input
 - Phenotype



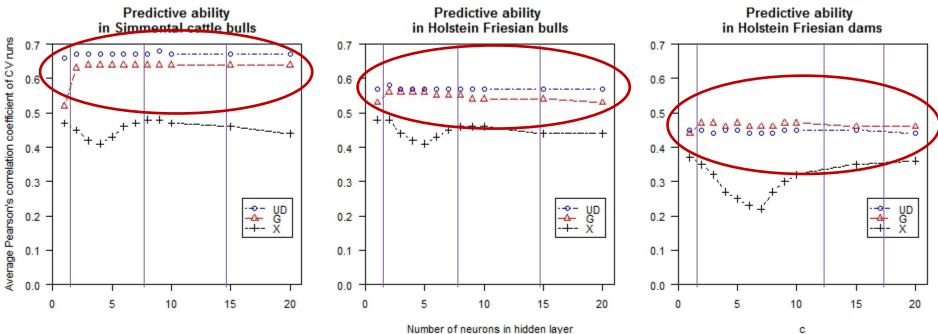
Results – Predicting milk yield

- 100 individual cross-validation runs
- Impact of
 - Network architecture
 - Genomic input
 - Phenotype



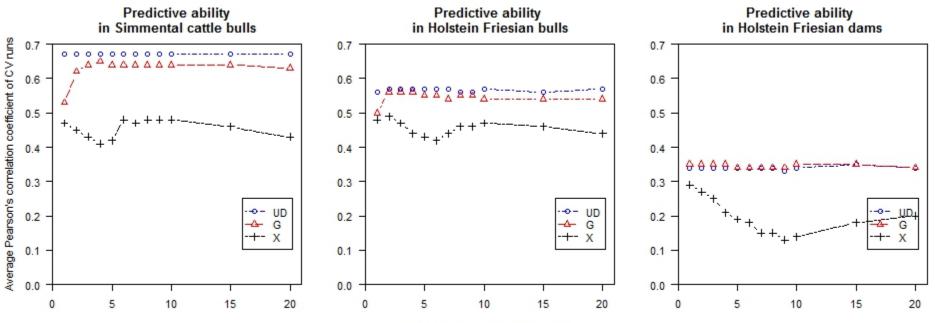
Results – Predicting milk yield

- 100 individual cross-validation runs
- Impact of
 - Network architecture
 - Genomic input
 - Phenotype



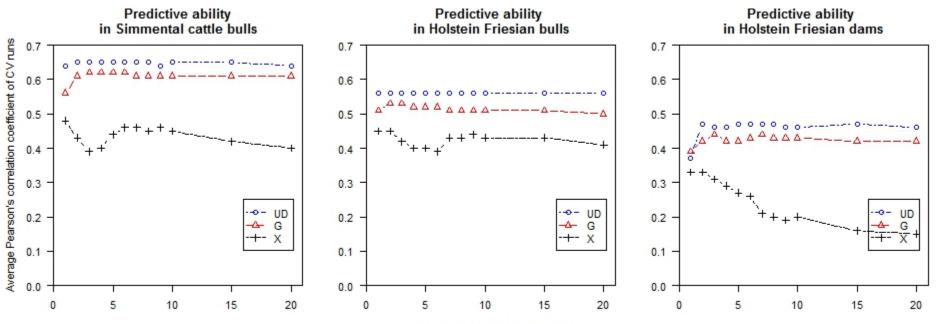
Results – Predicting protein yield

- 100 individual cross-validation runs
- Impact of
 - Network architecture
 - Genomic input
 - Phenotype



Results - Predicting fat yield

- 100 individual cross-validation runs
- Impact of
 - Network architecture
 - Genomic input
 - Phenotype



Conclusion

The network architecture

- Has only a slight effect on the predictive ability of future outcomes when dimension-reduction inputs are used
- Has a large effect on the prediction performance when the raw marker matrix is used
 - ✓ maybe a numerical problem?

The type of genomic input

- Has a large effect on the predictive ability
 - ✓ because of model complexity
- > The principle component score matrix (UD) seems to be a suitable input
 - not loosing to much information of the original matrix while simultaneously reducing model complexity

Conclusion

The milk traits

- There is only a slight difference in prediction of future outcomes
 - ✓ because of a similar genetic background of the traits?

The number of animals in the analyses

- Maybe has an effect on the predictive ability as well as the pre-correction of the target trait
 - \checkmark but hard to distinguish between both

In summary

Artificial neural networks can be applied to genome-enabled predictions but feature selection methods are highly recommended

Thank you for your attention!

"Always remember, there is no such thing as a free lunch - will you pick up the bill?"

SPONSORED BY THE

Federal Ministry of Education and Research

Back-propagation algorithm

with early stopping (generalization)

- Minimization of a sum-of-squares error function using a gradient descent optimization
 - ✓ Threshold = 10^{-3}
 - ✓ Learning rate = 0.002
 - ✓ Learn delay = 0.03
 - ✓ Weights = random [-0.1;0.1]
 - ✓ Feature scaling

