Genomic prediction of heterosis for egg production traits in white Leghorn crosses

- E.N. Amuzu-Aweh
- P. Bijma
- H. Bovenhuis

Heterosis

Heterosis is an essential element of crossbreeding schemes

Problem: selection of suitable parental lines

- Prediction has a long history with inconsistent results
 - limited number of markers/small data sets

Does genome-wide difference in allele frequency between pure lines predict heterosis in white Leghorns?

- 11 pure lines genotype
- Allele frequency at 60K SNP loci
- 47 crosses phenotype
- Egg number, egg weight, survival

Theory

Heterosis is proportional to the squared difference in allele frequency (SDAF) between the parental lines

Heterosissis
$$\overline{ij} = \sum_{l} d_{l} d_{l} p_{\overline{i},l} p_{\overline{j},l} p_{\overline{j},l} p_{j,l}^{2}$$

- d : dominance deviation
- $P_{i,i}$: allele frequency at locus *i* in parental line *i*
- $P_{j,l}$: allele frequency at locus *l* in parental line *j*

⁽Falconer & Mackay, 1996)

Model

Regress crossbred phenotypes on SDAF

 $y_{ijklm} = \mu + sire - line_{i} + dam - line_{j} + \beta \cdot SDAF_{ij} + ... + e_{ijklm}$ $\implies \hat{\beta}_{trait}$ Predicted heterosis_{trait, ii} = $\hat{\beta}_{trait} \times SDAF_{ii}$

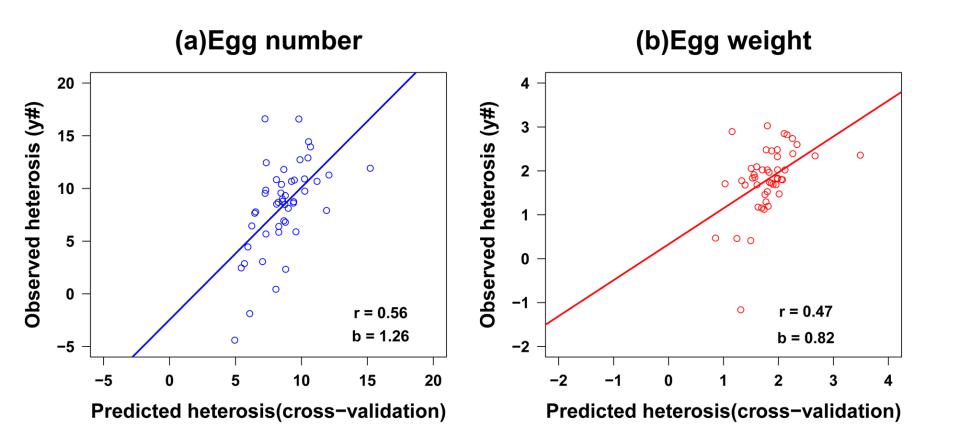
Observed heterosis (y[#]):crossbred phenotypes corrected for parental means

Accuracy of prediction

Correlation between observed and predicted heterosis

Cross-validation

- \bullet Predict heterosis for crosses left out of the estimation of β
- Leave-one-out strategy


Estimated heterosis due to SDAF

Trait	Â	se(β̂)	p value
Egg number	103.5	16.8	>0.001
Egg weight	22.3	2.2	>0.001
Survival days	-42.1	25.9	0.10

SDAF explains heterosis:

- Egg number: 5.2 11.7 eggs
- Egg weight: 1.1 2.5g

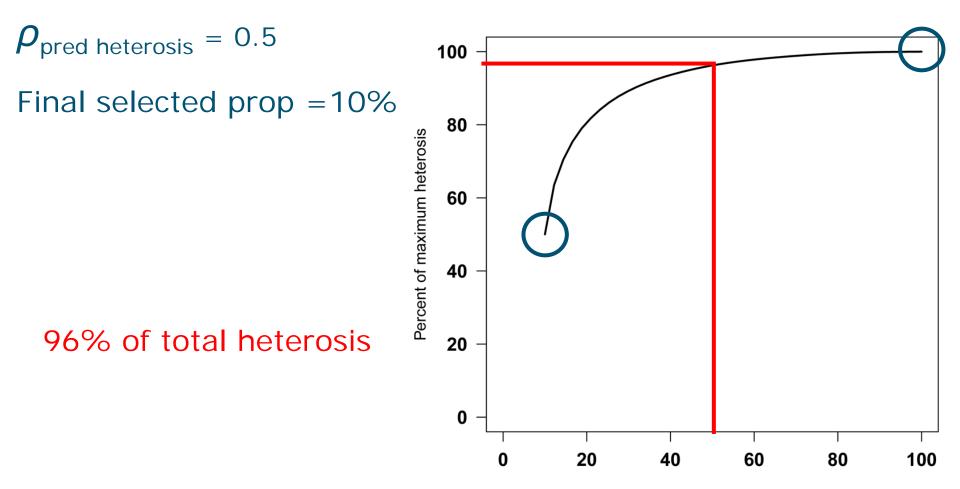
Cross validation

Heterosis prediction

SDAF predicts heterosis in egg traits with an accuracy of ~0.5

SDAF did not predict heterosis in survival days

• limited variation in survival days


Benefits of predicting heterosis

Two-step selection

- 1. Select a subset of crosses based on predicted heterosis
- 2. Field-test only selected crosses

Benefits of predicting heterosis

Two-step selection:

Proportion of animals selected in step 1 of selection(%)

Observed heterosis

Crossbred phenotypes corrected for sire-line, damline and systematic effects

$$y_{ijklm} = \mu + sire - line_i + dam - line_j + \beta \cdot SDAF_{ij} + ... + e_{ijklm}$$

sire-line_i dam-line_j = pure-line means

SDAF partitions crossbred phenotypes into pure line means and heterosis

Conclusions

• The squared difference in allele frequency predicts heterosis ($\rho = \sim 0.5$)

 Reduce field tests by 50% with only 4% loss in heterosis

 Heterosis can be predicted even without pureline phenotypes

- The squared difference in allele frequency predicts heterosis
- Reduce field tests by 50% with only 4% loss in heterosis
- Heterosis can be predicted even without pure-line phenotypes

See Amuzu-Aweh et al 2013 (Heredity, in press)

SDAF between lines

	S 1	S 2	S 3	S 4	S 5	D1	D2	D3	D4	D5	D6	
S 1			0.004	0.095	0.094	0.082	0.089	0.082	0.072	0.085	0.082	0.073
S 2				0.094	0.094	0.080	0.085	0.080	0.070	0.083	0.079	0.071
S 3					0.105	0.099	0.112	0.095	0.091	0.098	0.101	0.090
S 4						0.085	0.113	0.092	0.089	0.089	0.101	0.085
S 5							0.103	0.056	0.060	0.058	0.089	0.057
D1								0.096	0.078	0.096	0.048	0.068
D2									0.032	0.029	0.083	0.061
D3										0.041	0.066	0.055
D4											0.081	0.060
D5												0.050
D6												

Observed heterosis

Crossbred phenotypes corrected for sire-line, damline and systematic effects

$$y_{ijklm} = \mu + sire - line_i + dam - line_j + \beta \cdot SDAF_{ij} + ... + e_{ijklm}$$

$$y^{\#}_{ijklm} = y_{ijklm} - \hat{\mu} - sire-\hat{l}ine_i - dam-\hat{l}ine_j - ...$$

Observed heterosis_{trait,ij} = $\overline{y}^{\#}_{trait, ij}$

Done for each cross independently