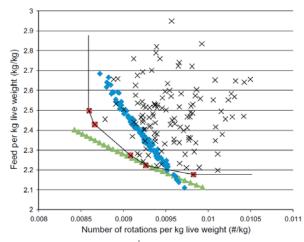


Effect of group housing on the productive efficiency of sow farms in Flanders

Marijke Meul

Dep. of Animal Production, Faculty of Applied Bioscience Engineering, University College Ghent


Jolien Hamerlinck, Jef Van Meensel

Social Sciences Unit, Institute for Agricultural and Fisheries Research

Pieter-Jan Delbeke

Boerenbond

Background and research goals

- Structural differences between housing systems may affect performance parameters, e.g. feed use efficiency
- Shift from individual housing to group housing might affect the overall efficiency of sow keeping and result in environmental and economic trade-offs
- Research goals:
 - Compare the environmental impact and economic performance of a group of Flemish sow farms, applying different housing systems
 - 2. Compare efficiency performance and identify farm-specific environmental and economic benchmarks using frontier analysis

Work in progress
Preliminary results
Limited dataset

Case-study farms

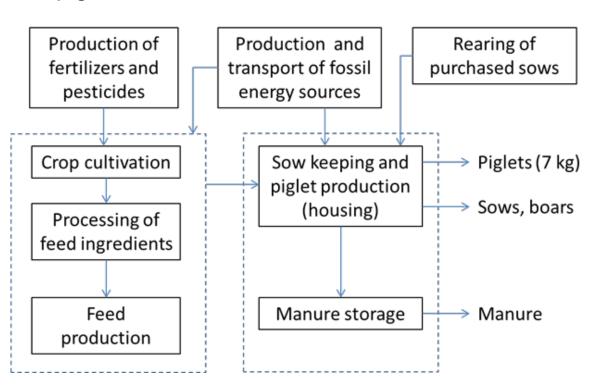
	housing	ACCACC	trough/ trickle	TAAA	ad libitum feeding
total number of farms	15	17	3	5	5
total number of sows	2300	5068	626	1264	1120

	physical separation	individualised	all sows can eat	feed
type of housing system	during feeding	ration	simultaneously	restriction
individual housing	yes	no	yes	yes
free access stalls	yes	no	yes	yes
feeding trough/trickle feeding	partial/no	no	yes	yes
ad libitum feeding	no	no	no	no
electronic feed stations	no	yes	no	yes

Adapted from Tuyttens et al. (2011)

Case-study farms

Other GHS


	individual housing	free access stalls	feeding trough/ trickle feeding	electronic feed stations	ad libitum feeding
total number of farms	15	17	3	5	5
total number of sows	2300	5068	626	1264	1120
number of sows P<0,05	153 (64.5)	298 (162 ₎ b	209 (24.6)	253 (97.5)	224 (83.1) b
weight of piglets sold (kg)	7.2 (0.37)	6.8 (0.64)	7.2 (0.29)	6.9 (0.56)	7.0 (0.18)
number of weaned piglets per sow	24.8 (2.6)	26.8 (2.7)	25.8 (3.0)	26.9 (1.7)	24.9 (3.1)
replacement rate (%)	39.7 (10.8)	48.2 (9.3)	51.9 (8.3)	50.0 (11.9)	43.1 (9.1)
concentrate use per sow (kg 88% DM)	1194 (109)	1224 (105)	1173 (41)	1251 (73)	1269 (58)
total production costs (€ per sow)	599 (71.o)	693 (104.3)	766 (36.1)	756 (110.8)	633 (88.0)
total revenues (€ per sow)	791 (96.9)	846 (89.6)	856 (112.8)	888 (51.2)	799 (57.7)

Environmental and economic performance of different housing systems: methods

Environmental performance of farms based on life cycle assessment (LCA) of 1 kg

of piglets sold

Data and methods:

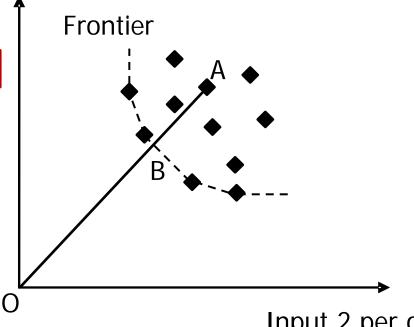
- Farm accountancies
- Feedprint (Vellinga et al., 2013)
- Ecoinvent (2010)
- IPCC (2006)
- Economic allocation
- NH₃: based on Nintake, independent of housing system (Groenestein et al., 2001)

Impact categories: global warming potential (kg CO_2 -eq), acidification potential (kg SO_2 -eq), eutrophication potential (kg PO_4^{3-} -eq), non-renewable energy use (MJ) and total land use (m²)

Environmental and economic performance of different housing systems: results

units per 100 kg piglets	individual housing	free access stalls	other GHS
environmental performance			
global warming potential (kg CO ₂ -eq)	712	694	700
acidification potential (kg SO ₂ -eq)	8.91	8.19	8.32
eutrophication potential (kg PO ₄ -eq)	3.11	2.94	2.96
non-renewable energy use (MJ)	5588	5218	5542
land use (m²)	1727	1784	1780
economic performance			
net farm income (€)	3.19	2.30	1.85
gross value added (€)	4.99	5.41	5.21

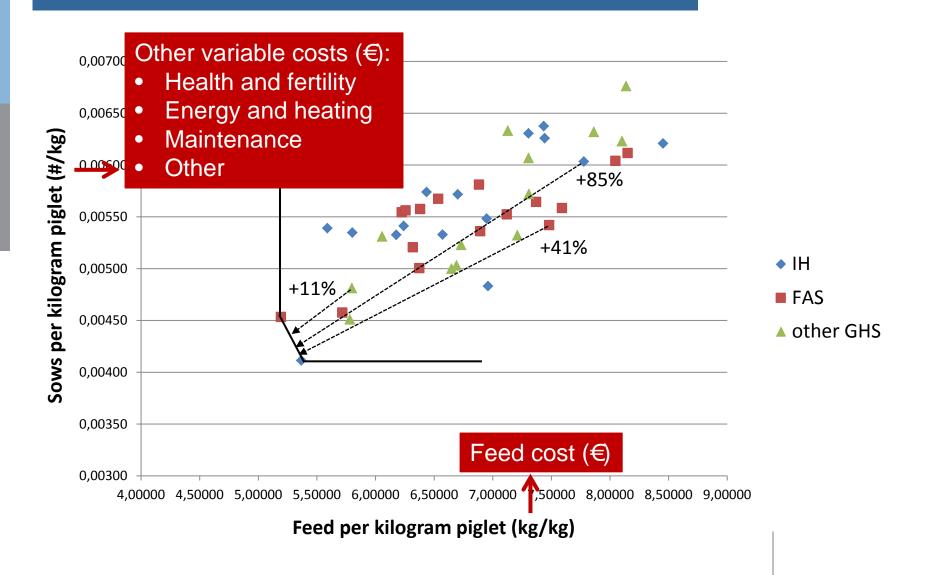
	contribution (%)	global warming potential	acidification potential	eutrophication potential	energy use	land use	total production costs
\lceil	purchased feed	51	28	55	56	100	53
	fossile energy use on-farm	22	8	6	44	0	7
	housing and manure storage	27	64	40	-	-	-
	health and fertility costs	-	-	-	-	-	13
	fixed costs	-	-	-	-	-	19



Efficiency analysis: methods

Input 1 per output unit

e.g. kg piglet

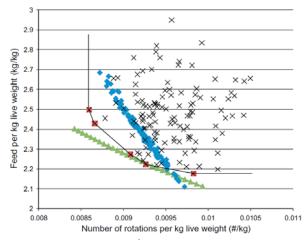

Input 2 per output unit

e.g. kg feed

e.g. kg piglet

Efficiency analysis: results

Conclusions


- Preliminary results indicate no differences in environmental and economic performance between different housing systems
- There is a large within-group variability in performance and technical efficiency between farms
- There is a large optimization potential for many of the studied farms

Contact details:

Marijke.meul@hogent.be

<u>Jef.vanmeensel@ilvo.vlaanderen.be</u>

