

Genetic effects of heat stress on milk yield and MIR predicted methane emissions of Holstein cows

M.-L. Vanrobays^{1,*}, N. Gengler¹, P.B. Kandel¹, H. Soyeurt¹ & H. Hammami^{1,2}

¹ University of Liège, Gembloux Agro-Bio Tech – Gembloux, Belgium ² National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium

Introduction

- To mitigate these interactions:
 - Breeding for heat tolerance
 - Breeding for reducing CH₄ emissions

- Genetic parameters of
 - -Milk yield
 - CH₄ emissions predicted by milk mid-infrared (MIR) spectra

→According to a Temperature Humidity Index (THI)

Data

Prediction of daily CH₄ emissions of cows

 From milk MIR spectra
 R² of cross-validation = 0.70

(Vanlierde et al., 2013, Presentation 2, Session 4, EAAP, Nantes)

Data

- 257,635 milk test-day (TD) records with MIR predicted CH₄
 - 51,782 Walloon Holstein first-parity cows
 - From January 2007 to December 2010
 - 983 herds
 - ≥ 15 cows / herd
 - ≥ 3 records / cow
- Pedigree
 - 150,399 animals

Descriptive statistics of the dataset

Traits (N=257,635)	Mean	SD
Milk (kg/day)	23.42	5.89
MIR CH ₄ (g/day)	558.05	89.89

Meteorological data

- Daily meteorological data
 - 4 public weather stations in the Walloon Region of Belgium (IRM)
 - Dry Bulb Temperature (T_{db})
 - Relative Humidity (RH)

Temperature Humidity Index

$$THI = (1.8 \times T_{db} + 32) - [(0.55 - 0.0055 \times RH) \times (1.8 \times T_{db} - 26)]$$

where T_{db} = Dry Bulb Temperature (°C) & RH = Relative Humidity (%)

(NRC, 1981)

Temperature Humidity Index

64nd EAAP Annual Meeting , Nantes, France, August 26th - 30^{sh} 2013

Temperature Humidity Index

$$THI = (1.8 \times T_{db} + 32) - [(0.55 - 0.0055 \times RH) \times (1.8 \times T_{db} - 26)]$$

where T_{db} = Dry Bulb Temperature (°C) & RH = Relative Humidity (%)

(NRC, 1981)

Mean THI of the previous 3 days before TD record → Used as THI reference for that record

Bivariate random regression TD model

 With random linear regressions on THI values

 $y = Xb + Q_1 (Wh + Zp + Za) + e$

- Fixed effects: Herd x Test-day, Lactation stage, Gestation stage & Age at calving x Season of calving x Lactation stage
- Random effects: Year of calving x Herd, Permanent environment & Additive genetic

✓ Regressions modelled with 1st order Legendre polynomials

Bivariate random regression TD model

 With random linear regressions on THI values

 $y = Xb + Q_1 (Wh + Zp + Za) + e$

- Estimation of variance components
 - REMLF90 (Misztal, 2012)
- Estimation of breeding values
 - BLUPF90 (Misztal, 2012)

Genetic parameters

 Genetic variances (σ²) & correlations (r) estimated for milk (MY) & MIR predicted CH₄ by bivariate analysis

	$\sigma^2_{MY_0}$	$\sigma^2_{MY_{hs}}$	$\sigma^2_{CH_{40}}$	$\sigma^2_{CH_{4hs}}$
Variances	3.28	0.16	438.4	29.44
$\sigma^2_{a_{hs}} / \sigma^2_{a_0}$	0.05		0.07	
r _{ao} , a _{hs}	-0.24		0.19	
r _{MY0} , сн ₄₀	-0.27			
r _{MY_{hs}, _{CH₄hs}}	-0.29			

Subscript (0) means the intercept (regular) & (hs) is the slope (heat tolerance)

Genetic parameters

• Genetic correlations between THI value of 18 & other THI values

Correlations with milk yield

EBV – MIR CH₄ (g/day)

• EBV of bulls with at least 30 daughters

Bulls with the largest slopesBulls with the smallest slopes

Conclusions

- Influence of THI on MIR CH₄ emissions of cows
- Expression of genetic potential according to THI for studied traits
- THI affected on a similar scale milk yield & CH₄ trait
- Selection for heat tolerance & reduced CH₄ emissions seems to be possible

Thank you for your attention

Acknowledgments for financial support:

- Public Service of Wallonia (SPW-DGO3; project D31-1304)
- National Fund for Scientific Research
- The GreenHouseMilk project

The GreenHouseMilk project is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-238562. This publication represents the views of the authors, not the European Commission, and the Commission is not liable for any use that may be made of the information.

Corresponding author's email: mlvanrobays@ulg.ac.be

