Genetic evaluation of mastitis liability and recovery through longitudinal models of somatic cell count

> B.G. Welderufael EGS-ABG Doctoral Candidate Swedish University of Agricultural Sciences Department of Animal Breeding and Genetics

Introduction

- Mastitis is most frequent and costly diseases.
- Genetic evaluation is performed either with cross sectional or longitudinal methods¹.
- Cross-sectional methods are the most commonly used.
- In cross-sectional methods lactations are considered as a static process.

Introduction

- Longitudinal methods enable us to model changes throughout a lactation:
 - Getting infected
 - Recovery after infection
- SCC (Somatic Cell Count) is used as a proxy to label clinical mastitis.

Develop better longitudinal models that capture as much genetic information as possible in both directions of the disease.

Material and Methods

- Data with five dairy traits were generated in Fortran.
 SCC and TBV for mastitis liability and recovery
- Two population sizes:
 - 24 000 and 60 000 first-parity cows from 1200 herds
 - 400 unrelated sires (60 or 150 daughter/sire)
- 28% and 95% mastitis incidence rates per lactation
- Genetic correlations between infection and recovery:
 - ▶ rg = 0.00. rg = 0.02. rg = -0.02
- Designed to generate a representative of the real life dairy population and alternative herd structure¹.

Data Creation

Binary data {0, 1} were created to define:

Transition probability model

Possibilities of mastitis contract and recovery model

$$\bullet T_i = \begin{bmatrix} \pi^{(H \ to \ D)} & 1 - \pi^{(H \ to \ D)} \\ 1 - \pi^{(D \ to \ H)} & \pi^{(D \ to \ H)} \end{bmatrix}$$

- T_i = transition probabilities for individual *i* going from a healthy (H) to a disease (D) state or the other way.
- A desired structure of the transition matrix is
 - High values of $\pi^{(H \text{ to } H)}$ and $\pi^{(D \text{ to } H)}$
 - Low values $\pi^{(H \text{ to } D)}$ and $\pi^{(D \text{ to } D)}$

Statistical Model

The transition probability of getting infected:

•
$$f_{ijkt}^{(H \ to \ D)} \sim Ber(\pi^{(H \ to \ D)}_{ijk})$$
 and

- $Probit(\pi^{(H \ to \ D)}_{ijk}) = \beta^{(H \ to \ D)} + S_j^{(H \ to \ D)} + h_k^{(H \ to \ D)} + e_{ijk}^{(H \ to \ D)}$
 - $f_{ijkt}^{(H \ to \ D)} = 1$ if a transition in time interval *t*. otherwise = 0.
 - β = liability of mastitis during period *i* for an average cow
 - h_i = fixed herd effect ; s_k = random sire effect
 - e_{ijkl} = random residual effect for a cow
- The transition probability of recovery $\pi^{(D \ to \ H)}_{ijk}$:

$$f_{ijkt}^{(D \ to \ H)} \sim Ber(\pi^{(D \ to \ H)}_{ijk}) \text{ and }$$

• $probit(\pi^{(D \ to \ H)}_{ijk}) = \beta^{(D \ to \ H)} + S_j^{(D \ to \ H)} + h_k^{(D \ to \ H)} + e_{ijk}^{(D \ to \ H)}$

Statistical Analysis

- Breeding values were estimated.
- RJMC¹ package in DMU
 single trait genetic analysis
- MCMCglmm² package in R
 multitrait genetics analysis.
- Correlations between TBV and EBV were calculated as the reliability of estimates.

Results and Discussion

More reliable estimates in the HD direction

Cases per lactation	Scenario 1 (28%)		Scenario 2 (95%)	
Transition direction	HD	DH	HD	DH
r _g = 0	0.73	0.40	0.81	0.61
rg= 0.2	0.72	0.37	0.82	0.62
rg= -0.2	0.71	0.56	0.82	0.59

 So far: single-trait analysis, ignoring genetic correlation between contracting and recovery.

Results and Discussion

Estimates from the MCMCglmm analysis

Direction	rTBV,EBV	h²	correlation	
HD	0.543	0.191		
			0.119	
DH	0.240	0.001		

 Bivariate model considering both traits at the same time enable us to calculate the possible genetic correlation between the traits.

MCMC trace plots

Conclusions

- Selection accuracy as good as the estimations based on clinical mastitis for the HD direction.
- The transition probability model enables us to generate breeding values for DH direction.
- An option to include the whole disease course in the genetic evaluation of udder health.

