Metabolic Disorders and Reproduction in Dairy Cows Receiving a Folic Acid and Vitamin B₁₂ Supplement

By Mélissa Duplessis Ph.D. student in Animal Science, Université Laval, Québec, Canada

melissa.duplessis.1@ulaval.ca

Introduction

Ruminal microorganisms can synthetize Bvitamins (Bechdel et al., 1928 and NRC, 2001)

Introduction

- Previous studies showed that a combined supplement of folic acid and vitamin B₁₂:
 - Increased milk production
 - Improved energy balance in early lactation (Graulet et al., 2007 and Preynat et al., 2009)
- Vitamin B₁₂ is a coenzyme allowing propionate for its entry into the Krebs cycle

Determine the effects of a supplement of folic acid and vitamin B_{12} given around calving in 15 commercial dairy herds on:

- Incidence of metabolic disorders
- Reproduction performance of cows
- Culling rate

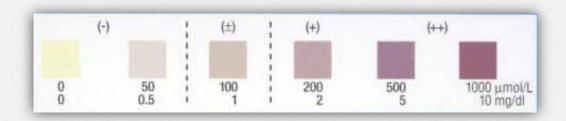
Materials and Methods

- 15 dairy herds
- - 271 primiparous and 534 multiparous cows
- Treatments (weekly 5 mL IM)
 - Control: saline 0.9 % NaCl
 - Vitamins: 320 mg of folic acid and 10 mg of vitamin B₁₂
- Treatments began 3 wk before the expected calving date until 8 wk postpartum

Materials and Methods

- Data collected on farms every other weeks:
 - Calving dates and health status (ex. Displaced abomasum?)
 - β-hydroxybutyrate (BHBA) level in milk through Keto-test between 3 and 21 days in milk (DIM)
 - Reproduction and culling data were obtained from Valacta (DHI agency, Sainte-Anne-de-Bellevue, QC, Canada)

- Calving ease
 - No assistance
 - Light assistance
 - Difficult calving
 - Surgery
 - Non-favourable calf presentation


Materials and Methods

Keto-test results:

Up to 100 μ mol/L = no ketosis

At or over 100 μ mol/L = ketosis

At or over 200 μ mol/L = ketosis, severe

Statistical analysis

Mixed and GLIMMIX procedures of SAS were used.

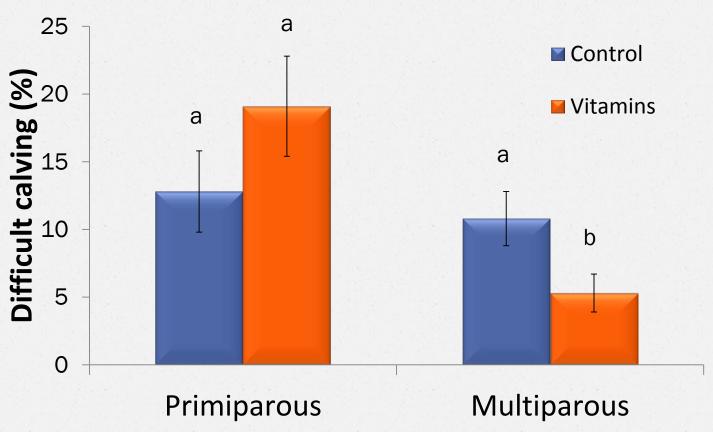
Results - Ketosis

Ketosis Incidence According to Treatments

Diseases	Treatments ¹			
	Control	Vitamins	SEM ²	P
Ketosis (%)	41.8	38.3	3.0	0.37
Ketosis, severe (%)	12.9	12.6	1.9	0.91

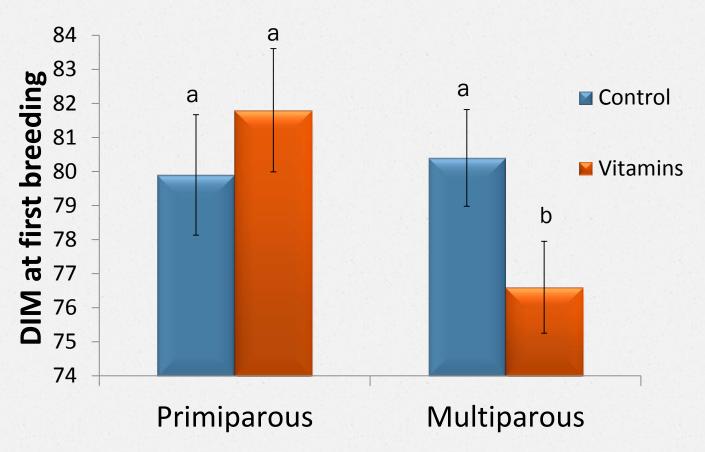
n = 800

 $^{^{\}rm 1}$ Control: saline 0.9% NaCl; Vitamins: 320 mg of folic acid and 10 mg of vitamin $\rm B_{12}$


² SEM= Standard Error of the Mean

Results - Diseases

No treatment effect was found on incidence of displaced abomasum, metritis, retained placenta, mastitis, and milk fever (P > 0.37)



Treatment x parity interaction (P = 0.008)

Treatment x parity interaction (P = 0.07)

Results - Reproduction

Items	Primiparous	Multiparous
Days open	130.7	135.5
Conception rate 1 st breeding (%)	40.1	36.6
Conception rate 1 st and 2 nd breedings (%)	71.1	65.1
Breedings/conception	2.3	2.4
Pregnant at 150 DIM (%)	76.9	67.7

No treatment effect (P > 0.05)

Results - Culling rate

	Primiparous	Multiparous
Culling rate (%)	15.8	29.3

No treatment effect (P = 0.58) Parity effect (P < 0.0001)

Primary culling reasons within 60 DIM: Diseases (27.7%) Injury (17.0%)

- Earlier first breeding date for supplemented multiparous cows could be caused by the supplement enhancing the energy metabolism efficiency in early lactation
 - Supported by cows receiving the supplement losing less body weight and body condition score, and having a reduced milk fat content and an increased milk protein content (Duplessis et al., 2012)

Acknowledgements

Director, co-director and collaborator

Doris Pellerin

Christiane Girard

Débora Santschi

Special thanks for the invaluable participation of the dairy producers!

Thank you!

Questions?

