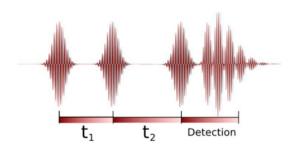


WITH THE SUPPORT OF

www.optimir.eu

Potential use of mid-infrared milk spectrum in pregnancy diagnosis of dairy cows

A. Lainé¹, A. Goubau¹, L. M. Dale¹, H. Bel Mabrouk¹,
H. Hammami^{1,2}, N. Gengler¹

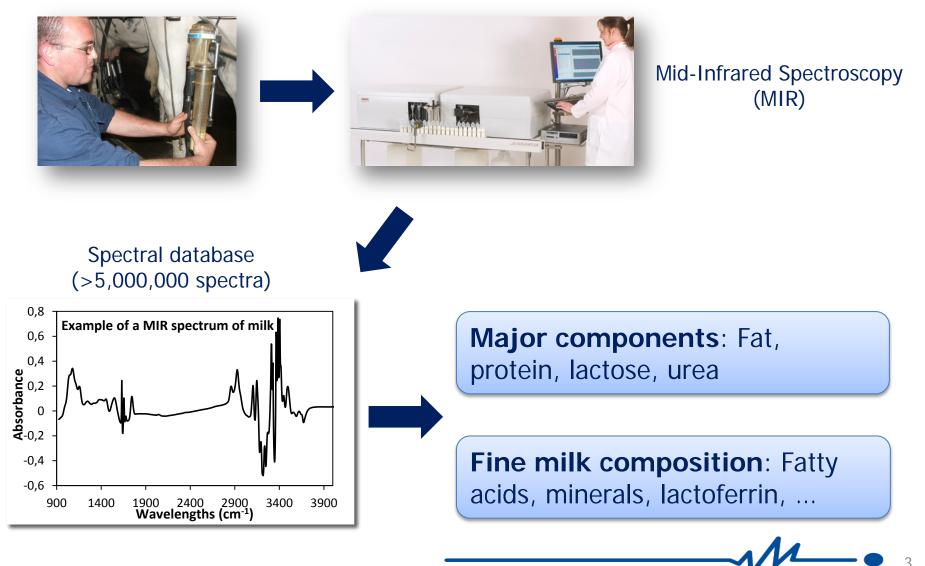

¹University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium ²National Fund for Scientific Research, Bruxelles, Belgium

Context

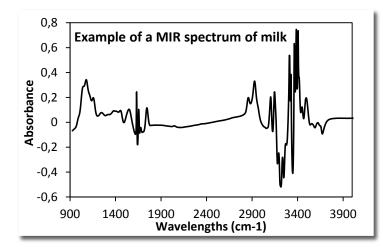
- OptiMIR project:
 - 17 European partners \rightarrow Common database
 - Milk recording organizations, research centers, milk analysis laboratory

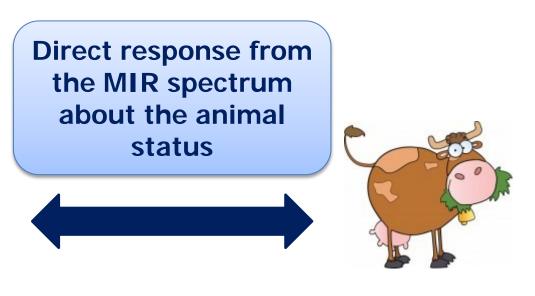
«New tools for a more sustainable dairy sector"

Based on mid-infrared spectral information from milk



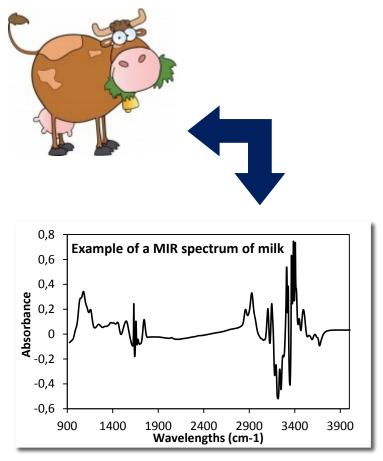
www.optimir.eu


- Fertility
- Feeding
- Health
- Rejection of pollutants
- Milk quality


Context

Milk recording

Objectives


- Identification of a spectrum coming from a pregnant cow or an open cow → Pregnancy Diagnosis
 - Important cost for the dairy sector
 - Milk recording organizations

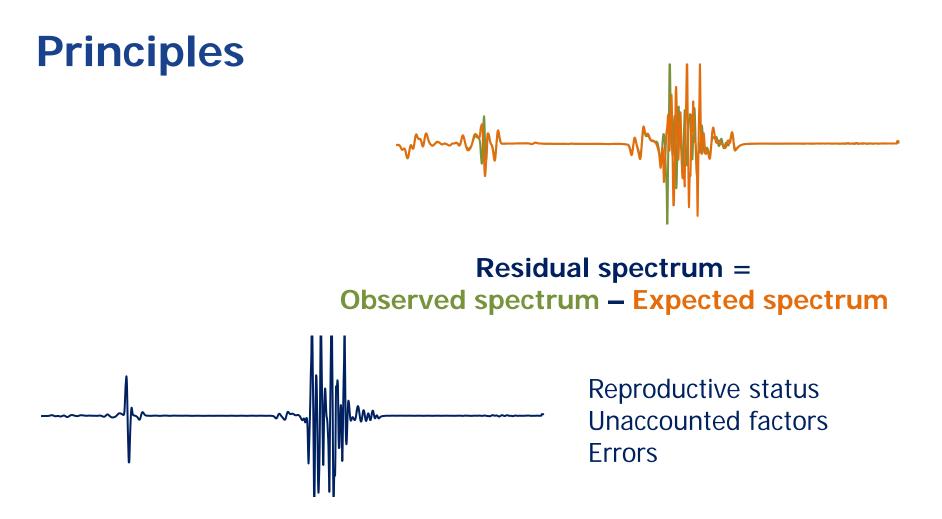
Does the observed MIR spectrum belong to a pregnant cow or not ?

64th EAAP Annual Meeting, Nantes, France, August 26th – 30th 2013

- Many factors influence the shape of the milk MIR spectra:
 - Days in Milk, Parity, Breed, Farm management, ...

➔ How to observe differences in spectra due to the pregnancy ?

- Literature examples :
 - Sloth et al. 2003: Adjustment of milk parameters on a subset of healthy samples applied on a whole dataset (healthy and not) to assess udder health from milk samples
 - Staib et al. 2001: Diagnosis of rheumatoid arthritis with discriminant analysis on human blood IR spectra



6

Expected spectrum = Expected spectrum for the same day in milk if the animal was not pregnant

Residual spectra are used to perform discrimination between two groups of classification (Pregnant cow and non-pregnant cow)

Data

- Dataset from Walloon Region of Belgium
 - 388,951 observations = spectra
 - TD from January 2010 to December 2012 \rightarrow 3 years
 - Only lactations that started within the period
 - At least 1 observation per animal x lactation for which the cow is open
- Pre-processing of MIR spectra
 - First derivative: Set all spectra to a common baseline
 - Informative area: Avoid noises and non-useful area
- Modeling an expected spectrum which is based on history of the animal
 - Animal, parity, breed, days in milk, ...
 - Modeling based on a subset of non-pregnant data: 197,109 spectra

64th EAAP Annual Meeting, Nantes, France, August 26th – 30th 2013

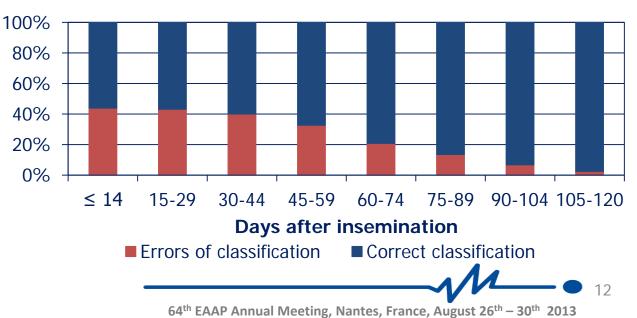
Data

- Discriminant analysis
 - Groups of classification: Pregnant and Non-pregnant
 - Predictors: Residual spectral points
- Training set = construction of the discriminant equation
 - TD from January 2010 to December 2011 \rightarrow 2 years
 - Maximum 120 days after the insemination
 - 217,148 observations (36.6% pregnant & 63.4% non-pregnant)
- Validation = test data for applying the discriminant equation
 - TD from January 2012 to December 2012 \rightarrow 1 year
 - TD from lactations that started after 1st January 2012
 - Maximum 120 days after the insemination
 - 51,109 observations (15.0% pregnant & 85.0% non-pregnant)

64th EAAP Annual Meeting, Nantes, France, August 26th – 30th 2013

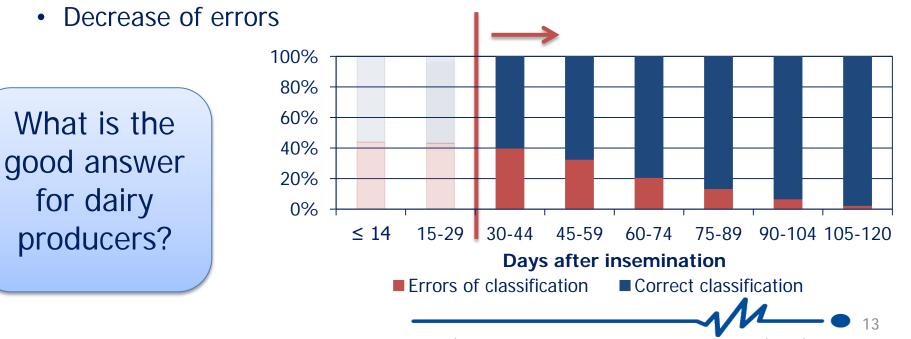
Results

Specificity = 96.8% (NP observations correctly classified) Sensibility = 77.0% (P observations correctly classified)


• Average error: 13.1%

Results

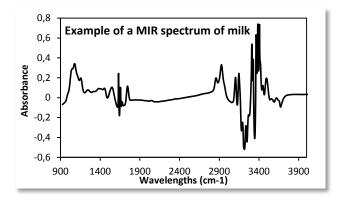
Specificity = 96.8% (NP observations correctly classified) Sensibility = 77.0% (P observations correctly classified)


- Average error: 13.1%
- Classification from validation dataset
 - Distribution by classes of 15 days after insemination
 - Decrease of errors

Results

Specificity = 96.8% (NP observations correctly classified) Sensibility = 77.0% (P observations correctly classified)

- Average error: 13.1%
- Classification from validation dataset
 - Distribution by classes of 15 days after insemination



Conclusion

- Direct use of the MIR spectra
 - Cheap
 - Easily transferable
 - MIR spectra already obtained in routine
 - Need an adjustement for other factors

- [•] " Diagnosis "
 - Information about a cow status
 - Usefull as a warning for dairy producers

Next steps

- Still under development
 - How are the errors distributed among data?
 - Other options than discriminant function?
 - •
- Optimisation and validation in the field
 - Test in pilot farms in the Walloon Region
- Development of the tool
 - Milk recording organizations involved in OptiMIR
 - Opportunity to use the same approach for mastitis detection or other metabolic disorders

WITH THE SUPPORT OF

www.optimir.eu

gembloux agro bio tech Université de Liège

Acknowledgments

Service Public of Wallonia SPW – DGO3 European Commission (ERDF) through project Interreg IVb OptiMIR

Author's contact e-mail: aurelie.laine@ulg.ac.be

Results - Cross-validation (Leave-one-out)

→ Residual spectra

Specificity = 95.0% (NP observations correctly classified) Sensibility = 66.6% (P observations correctly classified)

- Average error: 19.2%
 - → Raw spectra (no adjustments)

Specificity = 42.8 % (NP observations correctly classified) Sensibility = 95.4 % (P observations correctly classified)

• Average error: 30.1 %

Results - External validation

→ Residual spectra

Specificity = 96.8% (NP observations correctly classified) Sensibility = 77.0% (P observations correctly classified)

- Average error: 13.1%
 - → Raw spectra (no adjustments)

Specificity = 99.1% (NP observations correctly classified) Sensibility = 0.3% (P observations correctly classified)

• Average error: 50.3%

Expected spectrum = Expected spectrum for the same day in milk if the animal was not pregnant

 $y = X\beta + Z\gamma + \varepsilon$

- y = Vector of observations
 (spectral points)
- β = Fixed effects
- γ = Random effects
- $\boldsymbol{\varepsilon}$ = Residual errors
- X and Z = Incidence matrix

Mixed model on a subset of non pregnant data !

Solutions applied on the whole dataset to obtain all the expected spectrum

— 19

- Modeling an expected spectra which is based on history of the animal
 - Fixed effects: parity, breed, month of TD
 - Regression coefficients: *DIM* and *DIM*²
 - Random effects: *Cow x lactation*
 - Random regression coefficients: *DIM x cow x lactation* and *DIM² x cow x lactation*
- Subset of non-pregnant data: 197,109 spectra