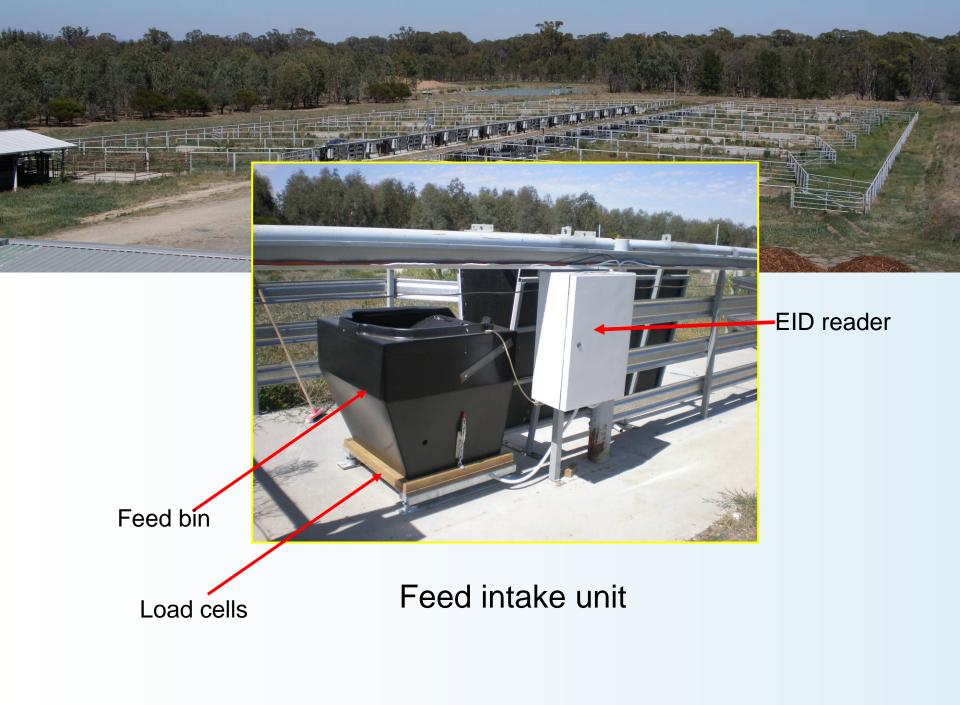


Calves that are divergent for residual feed intake as also divergent as cows

Jennie Pryce

Does an efficient calf become an efficient cow?

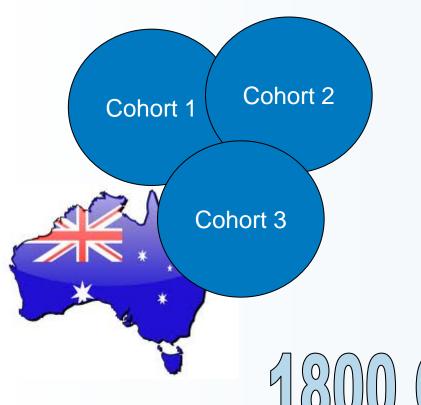
- –A calf uses feed to grow
- A cow uses feed to lactate

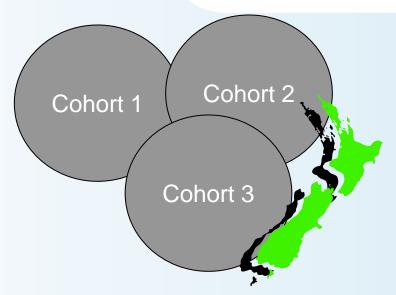


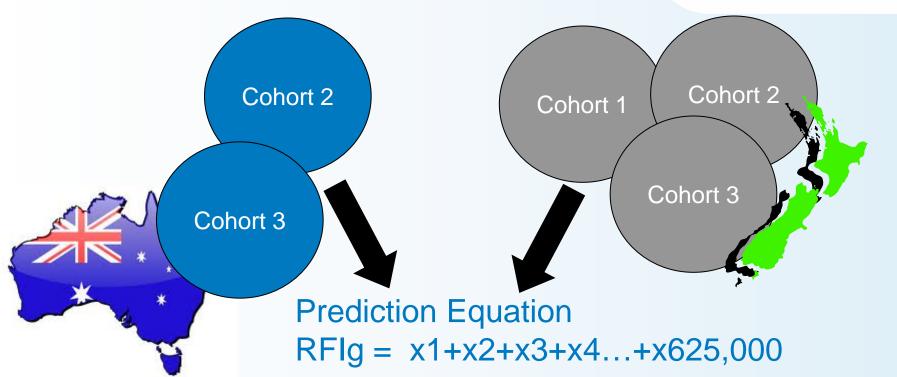
Residual Feed Intake is Actual – predicted DM intake

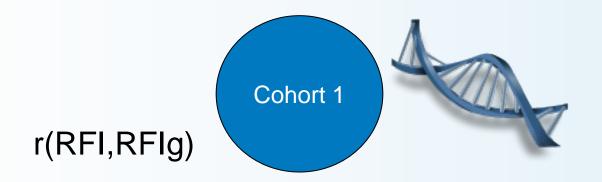
Same growth for less feed

Trans-Tasman collaboration


- -Started in 2007
- -Involved 1000 heifers from Australia and 1000 from NZ
- Measured feed intake, growth and weight over 56 day period


 Kept the best and worst for feed efficiency to study in lactation



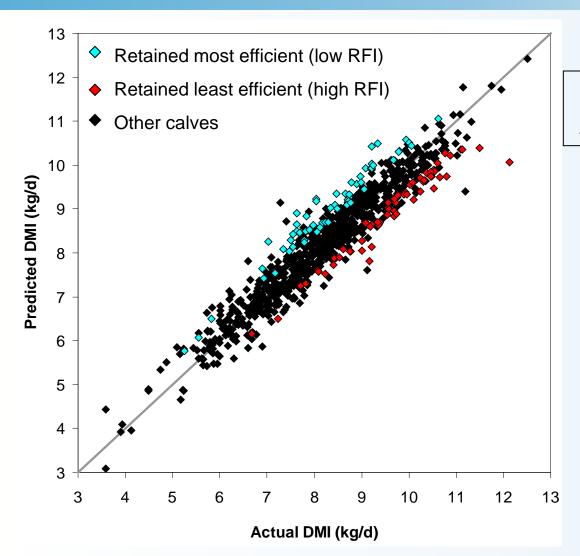


1800 CALVES

Results: Accuracy of genomic predictions

Validation	GBLUP	BayesMulti
AU trial 1	0.28	0.41
AU trial 2	0.31	0.39
AU trial 3	0.29	0.42
Average	0.29	0.41

J. Dairy Sci. 95:2108–2119 http://dx.doi.org/10.3168/jds.2011-4628 © American Dairy Science Association[®], 2012.


Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625,000 single nucleotide polymorphism markers

J. E. Pryce,*†¹ J. Arias,‡ P. J. Bowman,*† S. R. Davis,§ K. A. Macdonald,# G. C. Waghorn,# W. J. Wales,∥ Y. J. Williams,¶ R. J. Spelman,‡ and B. J. Hayes*†

*Biosciences Research Division, Department of Primary Industries Victoria, Bundoora, VIC 3083, Australia †Dairy Futures Cooperative Research Centre, Bundoora, VIC 3083, Australia

Divergent groups

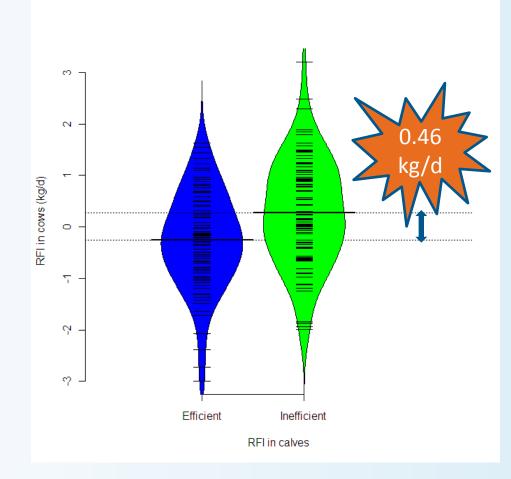
Residual Feed intake is Actual – predicted DM intake

Average DMI difference = **1.39 kgDM/d** NZ (18% of daily mean DMI of 7.61 kg/d)

1.35 kgDM/d Australia (16% of daily mean of DMI of 8.3 kg/d)

Divergent groups tested in lactation

- -1st lactation, *n*=183 from Australia and NZ
- -14 day adjustment, 30 day trial



Dry matter intake = days in milk + milk + fat + protein + lactose + liveweight + body condition score + RFI

- Efficient calves.....
 become efficient cows
- P<0.002
- Divergence (0.46kgDM/d)
 ~3% of DMI
- Correlation ~ 0.42

Feed efficiency markers validated

- Genomic breeding values for residual feed intake (RFI) calculated for whole Ellinbank herd, 79 "validation" cows chosen at random
 - balanced across parities
- Realised accuracy of 0.27 using heifer genomic prediction equation (i.e. 68% of our accuracy in growing heifers)

Dry matter intake = days in milk + parity + milk + fat + protein + lactose + liveweight + body condition score + RFI

Summary

- We have a genomic prediction tool for efficiency of growth in calves
- Growing heifer efficiency is correlated to lactating cow efficiency
- Working towards including RFI in the Australian national breeding objective

Acknowledgements

- -DEPI staff: Bundoora, Ellinbank, Rutherglen
- DairyNZ and LIC (New Zealand)
- -Gardiner Foundation
- -Dairy Future's Co-operative Research Council
- -ADHIS
- -gDMI collaborators

Questions?

Jennie Pryce

www.dairyfuturescrc.com.au

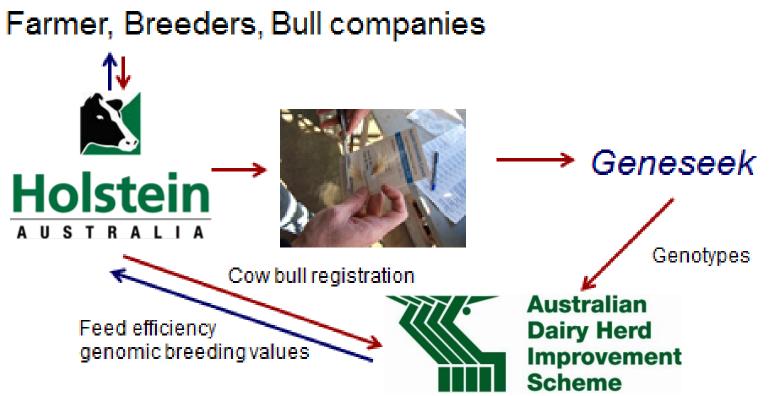
Implementation

- Need estimates of genetic correlations of RFI with traits of importance (Gonzalez-Recio et al., 2013)
- Economic value of RFI is \$102.67 (Bell et al., 2013)
- Calculate responses to selection

Means of posterior distribution of genomic correlations (SDs)

Trait	RFI
Milk yield	0.07 (0.08)
Fat yield	0.02 (0.07)
Protein yield	0.03 (0.07)
Calving interval	-0.13 (0.25)
Body condition score	0.71 (0.32)

Gonzalez-Recio et al, (2013)


Responses to selection

Trait	APR		FPI	
	Units	\$	Units	\$
Milk yield (I)	54.3	-2.86	49.08	-2.59
Protein yield (kg)	2.05	12.25	1.99	11.92
Fat yield (kg)	2.44	3.62	2.38	3.54
Survival (%)	1.1	7.72	1.04	7.34
Fertility (d)	-0.46	1.39	-0.53	1.61
SCC (%)	-2.92	0.76	-2.49	0.65
Liveweight (kg)	1.23	-1.04	0.51	-0.44
Milking speed (1-5)	-0.17	0.3	-0.13	0.23
Temperament (1-5)	-0.35	0.96	-0.36	0.96
RFI (kg/year)	3.41	-0.96	0.49	-0.14
Total Profit (AU\$)		22.14		23.09

Implementation

l Longevity Somatic Cell Calving Difficulty Body Condition 88 days -0.11 6.7 % 0.11

TRAITS

1.1 %

	BV - 0.5	0	0.5	3
tability to milking	.53			quickly
temperament	.57			placid
ng speed	.16			fast
all opinion	.59	112		desirable
re	.86			tall
city	.58	1		capacious
angle	.01			sloping
width	.42	Į.	- 1	wide
	24			curved
r support	.23	ļ. —		strong
udder	.21			strong
udder	.10			high
teat placement	.29	11		close
teat placement	.46			close
r overall	.22			desirable
conformation	.78	f		desirable
ughters TOP inspec	cted		New Zealar	nd Genetics 41%

VITIATIVES

	4225	Gestation Length	2.8 days
Input	2202	% Black	95 %
otein	A1A2	RFI	\$8 / 10%
nvestaMate discount a	applies (see page 11)		

CLASSIC PAK FROM \$ 7.46*

MORE OPTIONS. MORE CONTROL. MORE PERFORMANCE.