Faculty of Health and Medical Sciences

Genome-wide association and pathway inference for Residual Feed Intake (RFI) in Duroc boars

Duy Ngoc Do, Tage Ostersen, Anders Bjerring Strathe, Just Jensen, Thomas Mark & Haja N Kadarmideen

- University of Copenhagen, Faculty of Health and Medical Sciences
- Danish Agriculture & Food Council, Pig Research Centre
- Aarhus University, Department of Molecular Biology and Genetics

Background

Residual feed intake (RFI):

- RFI = observed daily feed intake (DFI) expected DFI
- Expected DFI: predicted from production and maintenance requirements (daily gain, metabolic mid weight, backfat...)*
- Explains about 25-35% of variance of feed intake in growing pigs**

Background

Selection of lower RFI:

- helps to reduce feed consumption (feed cost)
- does not (minimum) affect production traits (daily gain, weight...)
- gives better meat quality traits*
- has less impact on environment*

Background

Measurement of RFI in Danish pigs: two definitions

```
RFI1 = DFI - (\beta o + \beta_1 BWd + \beta_2 ADG)
```

```
RFI2 = DFI - (\beta o + \beta_1 BWd + \beta_2 ADG + \beta_3 BF)
```

J Anim Sci. 2013 Jul 3. [Epub ahead of print]

Genetic parameters for different measures of feed efficiency and related traits in boars of three pig breed: Do DN, Strathe AB, Jensen J, Mark T, Kadarmideen HN.

Heritabilities and genetic corelation

- \blacktriangleright Heritabilities: RFI1 = 0.34 and RFI2 = 0.38
- > RFI1 and RFI2 have very high genetic correlation (r = 0.96)
- > RFIs : high genetic correlation with DFI (r = 0.90) and FCR (r =

0.84), no genetic correlation with BF and ADG (r \sim 0)

Background and Objectives

Reseach gap

- Few QTL and candidate genes identifed for RFI in pigs
- ➢ No GWAS for RFI in Danish pigs
- Little understanding the biological pathways for RFI

Aims: to find out

- > Top SNPs
- Positional candidate genes
- Biological pathways for RFI

Materials and Methods

Methods

Association test

Model: $y = 1\mu + Za + mg + e$

- y: deregressed EBV (Garrick et al, 2009)
- a: random polygenic effect
- g: additive effect of the SNP
- e: error term

Implemented: DMU package, and GW significance threshold using Bonferroni correction ($p = 1.5x10^{-6}$)

Methods

Scan for positional candidate genes

The positional candidate genes within 0.5 Mb size flanking significant SNPs were scanned using the NCBI2R package

Pathway profiling

- > The genes were assigned to Kegg pathways, the Gene Ontology
- Pathway enrichment test used modified Fisher exact test (Wang, 2007)

Results: Manhattan plot of log(p.values) for RFI1 and RFI2

red line: significance GW threshold (1.5x10⁻⁶), blue line= suggestive GW (5x10⁻⁵) threshold

Results: Significant markers for RFIs

SSC	p-value	Variance.Explained	Nearest gene
		(%)	
1	5.64 x 10 ⁻⁷	0.19	MAP3K5
1	4.68 x 10 ⁻⁷	0.19	MAP3K5
1	5.09 x 10 ⁻⁷	0.19	MAP3K5
1	4.54 x 10 ⁻⁷	0.19	MAP3K5
1	3.67 x 10 ⁻⁷	0.20	MAP3K5
9	3.64 x 10 ⁻⁷	0.20	ENSSSCG00000022338
9	2.49 x 10 ⁻⁷	0.20	ENSSSCG00000022338
9	6.02 x 10 ⁻⁷	0.20	ENSSSCG00000022338
9	5.02 x 10 ⁻⁷	0.20	ENSSSCG00000022338
13	2.87 x 10 ⁻⁷	0.13	HLCS
13	3.07 x 10 ⁻⁷	0.13	HLCS

> No SNPs with major effect on phenotypic variance (max = 0.2%)

Several SNPs/genes have biological relevance to RFI

Results: KEGG-pathways associated with for RFIs

Pathway Name	Involved genes	p-value
Gap junction	TUBA4A, ERK2, ADRB1, PRKG1, TUBA3D, TUBA1A	0.002
Phosphatidylinositol signaling system	PTEN, PIK3R5, PLCD4,	0.013
Insulin signaling pathway	ERK2, SLC2A4, PIK3R5, PRKAR1A, PRKAG3	0.031

How does gap junction pathway involve in RFIs?

- Gap junction: communicating between the cytosolic compartments of adjacent cells
- Essential for metabolic transport, apoptosis and tissue homeostasis
- Candidate genes for RFI contribute to the background use of energy in the cell (as apoptosis, cell progression, ion channels and flux)(Barendse et al, 2007)

Insulin signalling pathway affecting RFIs via glucose and lipid metabolism???

http://www.abcam.com/index.html?pageconfig=resource&rid=10602

Conclusion

- Two important genomic regions on pig SSC 1 and 9 and some positional genes influencing RFI measures were detected
- The study indicates role of insulin signaling pathway and revealed some other possible pathways in regulation of RFI
- The results would be useful for further investigations of key candidate genes (?) for RFI and for development of biomarkers

Future perspectives:

OPEN O ACCESS Freely available online

Genome-Wide Association Study Reveals Genetic Architecture of Eating Behavior in Pigs and Its Implications for Humans Obesity by Comparative Mapping

Duy Ngoc Do¹, Anders Bjerring Strathe^{1,2}, Tage Ostersen², Just Jensen³, Thomas Mark¹, Haja N Kadarmideen¹*

- Comparative mapping/fine mapping: Are QTL for RFI in pigs homologous with QTL for food intake/energy balance in human?
- ➢ GWAS for component traits of RFI, for RFI in other breeds

Genomic prediction/selection for RFI in single/mutiple traits

Acknowledgements

- Department of Genetics and Breeding, Danish Pig Research Center (VSP)
- Faculty of Health and Medical Sciences, University of Copenhagen
- > PhD committee:

Main supervisor: Prof. Haja N Kadarmideen

Co-supervisors: Prof. Just Jensen

Assoc. Prof. Thomas Mark

Dr. Anders Strathe

Thank you

