

Quantomics

Identification and conservation of novel Long Noncoding RNAs in cattle using RNASeq data

Kedra, D. ¹, Bussotti, G. ¹, Prieto, P. ¹, Sørensen, P. ², Bagnato, A. ³, Mckay, S.D. ⁴, Schnabel, R. ⁴, Taylor, J.F. ⁴, Guigo, R. ¹, Notredame, C¹

¹Centre de Regulacio Genomica (CRG), Spain, ²Aarhus University, Denmark, ³Università degli Studi di Milano, Italy,, ⁴University of Missouri, USA,

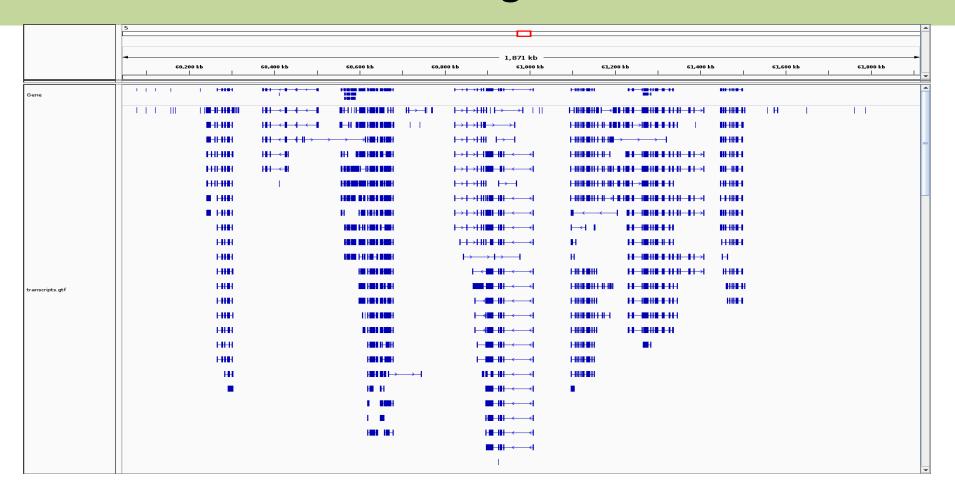
IncRNA prediction strategies

- RNASeq based
- Homology based (Human Gencode 2 cow)
- Homology based (cow RNASeq filtered predictions vs several mamalian genomes)

Bovine data

- 30 Liver samples (@CRG) 2x 96bp, 2 500Mr
- 28 liver, small intestine, skeletal muscle samples 80bp x 1/2 (Jerry Taylor)
- 15 ovary samples 51bp x1 (Milano)
- 84 udder/muscle samples (Denmark)
- 1.2M bovine ESTs from NCBI (complementary to RNASeq)

Bos strategy 1


- mapping both with in house RNASeq mapping pipeline GRAPe
- GSNAP
- GMAP for ESTs (filtered by seqclean from PASA)
- cufflinks gene models
- merge models
- remove genes overlapping with known genes from ENSEMBL72

Quantomics

Bos results merged cufflinks

Remove genes overlapping with ENSEMBL 72

Bos strategy 2

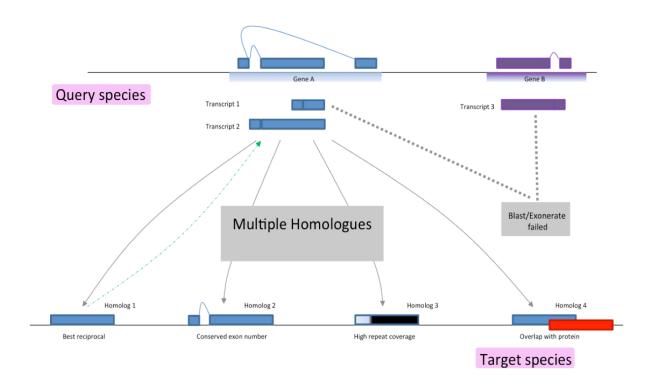
- remove 1 exon genes and transcripts shorter than 150bp
- extract transcript sequences
- cluster transcripts at 90% identity (usearch)
- RESULT 1:
 - 15 356 transcripts from 9775 genes
- check for repeats, ORFs, sizes etc.
- find putative non-coding transcripts

Sanity check

- blastn all transcripts against human GENCODE 17 IncRNAs
- l top hits (e= 0.0) include MALAT1, KCNQ1, KLHL7, MMP24 etc.

Repeat Masking

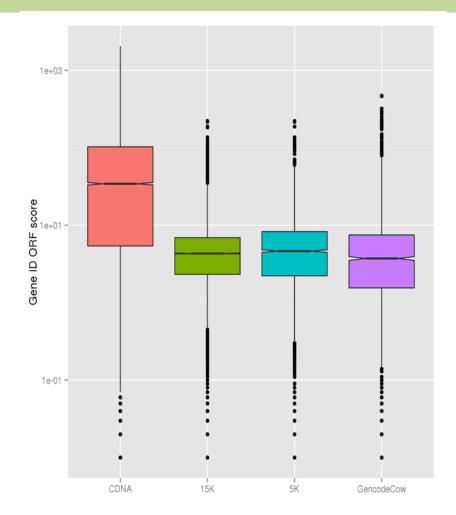
- Î 40% of all our transcript sequence was masked by RepeatMasker (*)
- selected transcripts with no more 20% of the repetitive sequence
 - Ë RESULT: 4541 transcripts from 3255 genes
 - Ë Sanity check: still got MALAT1 etc.
- * Gencode 17 human: 25% repetitive



Homology prediction: PipeR

Mapping overview

Human Gencode 2 cow: homology


- Take all Gencode 17 IncRNA transcripts
- I Run PipeR using cow genome as target
- RESULT:
 - 4210 human transcripts have 4758 homologues from 3195 genes in cow

Results comparison: geneid coding potential

Homology vs RNASeq

- l Little overlap:
 - Î 3195 genes have just 295(!) overlaps with strict nonrepetitive RNASeq transcripts
 - But 1423 of them have overlap with all cufflinks 2 exons or more RNASeq based transcripts (at 10% or more)
- Probably in both approaches we do not get complete gene models but just gene fragments

Cow IncRNA (RNASeq) vs other species

- So far 874 cow queries queries produced:
 - Î 384 human
 - 1 404 pig
 - Î 211 mouse
 - I Give it another week or so...

Quantomics

Thank you for your attention!

And everybody involved during the study!

- > Centre de Regulacio Genomica (CRG), Spain,
 - Bussotti, G., Prieto, P. Guigo, R., Notredame, C
- > Aarhus University, Denmark,
 - Sørensen, P.
- Università degli Studi di Milano, Italy
 - Bagnato, A.
- University of Missouri, USA,
 - Mckay, S.D., Schnabel, R., Taylor, J.F.