

High resolution copy number variable regions in Brown Swiss dairy cattle and their value as markers

MA Dolezal^{1,2,3}, K Schlangen^{1,2}, F Panitz⁴, L Pellegrino¹, M Soller⁵, E Santus⁶, M Jaritz³, A Bagnato^{1,7}

1 University of Milan

2 Vetmeduni Vienna

3 FH Campus Vienna

4 Aarhus University

5 Hebrew University Jerusalem

6 ANARB

7 G&B platform Filarete Foundation - UNIMI

This presentation represents the views of the Authors, not the EC. The EC is not liable for any use that may be made of the information

Background

CNVs are duplications, insertions and deletions of chromosomal segments in comparison to a reference genome

- CNVs recognized as substantial source of genetic variation
- CNVs are summarized to copy number variable regions (CNVRs) at the population level

Objective

- valuate potential contribution of CNVs as genetic markers for GWAS & GS in cattle
 - Polymorphic information content (PIC) of CNV loci
 - correlations between SNPs residing in CNVRs and their underlying CNVs
 - LD of SNPs residing in CNVRs with SNPs surrounding the CNVRs (adjacent SNPs)

Data for SNP array based CNV detection

- > 192 BS bulls genotyped with Illumina HD chip
- > Log R Ratios (LRR) total signal intensities
- > B allele frequencies (BAF) allelic intensity ratio values

LRR & BAF values for 735,239 SNPs on UMD3.1 autosome

Material & Methods – 1 CNV calling

> CNV calling in 164 stringently quality filtered bulls

- PennCNV¹ & genoCN²
- reliable CNV calls ≥3 consecutive SNPs of the same type

1 Wang et al. (2007) doi: 10.1101/gr.6861907 2 Sun et al. (2009) doi: 10.1093/nar/gkp493

Material & Methods – 2 definition of CNVRs

- within each algorithm summarisation of CNVs to CNVRs
 - union set of CNVs¹

 \leftrightarrow

- high confidence set of CNVRs for population genetic analysis
 - intersection of overlapping CNVRs of same type² across algorithms

Material & Methods – 3 identification of "real" alleles

genoCN¹ employs a 3 copy number state model

- 0-1-2 copies per haploid
- possible alleles: 0, A, B, AA, BB and AB
- total allelic content with highest posterior probability
 - eg. cn=3 AAB , possible alleles AA,B or AB,A
 - not equivalent to knowing the real alleles
- > allele calling & phasing with polyHap² v2.0

Material & Methods – 4 population genetic characterization

$$\blacktriangleright PIC = 1 - \sum_{i=1}^{n} p_i^2$$

LD between SNPs residing within CNVRs and their underlying CNV

- standard metrics incorrect¹
- $-r_{c}^{2}$ correctly quantifies covariance¹

1 Wineinger (2011) doi: 10.3389/fgene.2011.00017

Material & Methods – 5 population genetic characterization

Global LD between SNPs in CNVRs & neighbouring SNPs: Wn (Cramer's V^{1,2})

1 Cramer (1946) Mathematical Models of Statistics

2 Zhao (2007) Gap: Genetic Analysis Package. Journal of Statistical Software 23 (8):1-18

Results -1 number of alleles in CNVRs

Results - 2 Polymorphic Information Content

cn=2: copy number normal
cn≠2: copy number variable

Results - 3 LD between SNPs in CNVRs & underlying CNV

Results – 4 Global LD between neighbouring SNPs and SNPs in CNVRs

Conclusions

- **CNVs are valuable genetic markers**
 - high PIC
 - not sufficiently tagged by SNPs on HD chip

- Thank you for your attention!

Quality filtering

Distances

 Unphased SNVC genotype at SNVC1 and SNVC2

SNVC1	SNVC2
AAG	ССТ

Figure 1 from Kato et al. (2011) doi: 10.1534/g3.111.000174