16754. Marker to Marker LD in Relation to the Evolutionary History of the Site

Soller, M. ${ }^{1}$, Dolezal, M.A ${ }^{2}$, Bagnato, A. ${ }^{2}$, O'Sullivan, N. ${ }^{3}$, Fulton, J. ${ }^{3}$, Santus, E. ${ }^{2}$, Lipkin, E ${ }^{1}$.

${ }^{1}$ The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; ${ }^{2}$ Universita` degli Studi di Milano, 20133 Milano, Italy; ${ }^{3} \mathrm{Hy}$-Line International, Dallas Center, IA 50063, USA

The question

- LD between a pair of markers \boldsymbol{A} and \boldsymbol{B} as measured by r^{2}, depends on the frequency of the four haplotypes: $\boldsymbol{A B}, \boldsymbol{a b}, \boldsymbol{A b}, \boldsymbol{a B}$.
In this study we ask:
- What are the aspects of haplotype distribution that determine LD?
- How does the distribution of haplotype frequencies develop as a function of the evolutionary history of the site, and the distance separating the marker pair?

Notation

- For generality, we assign
- Haplotype $\boldsymbol{A B}$ to the most frequent haplotype,
- Haplotype $\boldsymbol{a b}$ to the double alternative to $\boldsymbol{A B}$,
- Haplotype $\boldsymbol{A} \boldsymbol{b}$, to the least frequent haplotype,.
- Haplotype $\boldsymbol{a} \boldsymbol{B}$, to the remaining haplotype.

Haplotype frequencies according to r^{2} values

- For each of target $r^{2}=0.1,0.2, \ldots .1 .0$, ten marker pairs presenting r^{2} value centered at the target were chosen (100 total marker pairs), and average haplotype frequencies $f(A B), f(a b), f(a B)$ and $f \boldsymbol{f} \boldsymbol{b}$) were calculated for each r^{2} value.

Table 1. Haplotype frequencies by r^{2}.

r^{2}	$f(A B)$	$f(a b)$	$f(a B)$	$f(A b)$	$f(A B+a b)$
0.1	0.476	0.333	0.155	0.037	0.809
0.2	0.524	0.268	0.184	0.024	0.792
0.3	0.518	0.255	0.212	0.208	
0.4	0.581	0.248	0.143	0.015	0.773
0.5	0.595	0.274	0.125	0.006	0.829
0.6	0.572	0.323	0.087	0.017	
0.7	0.708	0.229	0.051	0.012	0.894
0.8	0.660	0.295	0.038	0.007	0.131
0.9	0.634	0.344	0.019	0.004	0.955
1.0	0.693	0.307	0.000	0.000	0.977

Puzzle No. 1: Consistent order of frequencies for ab and aB

- In each case, without exception $f(a b)>f(a B)$.
- Thus, the general structure $f(A B)>f(a b)>f(a B) \gg f(A b)$ appears to be essential for significant LD.
- For the 777 K array, over 90% of pairs between adjacent markers ("adjacent marker pairs" - i.e., markers on the diagonal of the LD matrix) displayed the above haplotype distribution.
- Puzzle No. 1: How did such a high proportion of adjacent marker pairs come to have this very specific distribution of haplotypes?

r^{2} as a function of Haplotype frequencies

- In the range $\mathrm{r}^{2}=0.3$ to $1.0, \boldsymbol{f}(\boldsymbol{A B}+\boldsymbol{a b})$ increases consistently with r^{2}. - $\boldsymbol{f}(\boldsymbol{A b})$ is very close to zero and does not vary consistently with r^{2}, - $\boldsymbol{f}(\boldsymbol{a} \boldsymbol{B})$ decreases consistently with r^{2}.

$f(a B)$ is the main determiner of r^{2}

Table 2. $\mathrm{r}^{2}=0.5$ as function of haplotype frequencies. Individual values of 9 randomly chosen marker pairs presenting $r^{2} \sim 05$.

Within $\mathbf{r}^{2}=0.5$

\mathbf{r}^{2}	$\mathbf{A B}$	$\mathbf{a b}$	$\mathbf{a B}$	$\mathbf{A b}$	$\mathbf{A B}+\mathbf{a b}$
0.508	0.516	0.332	0.137	0.015	0.848
0.510	0.463	0.371	0.166	0.000	0.834
0.497	0.656	0.207	0.137	0.000	0.863
0.495	0.729	0.157	0.112	0.002	0.886
0.504	0.781	0.116	0.103	0.000	0.897
0.503	0.591	0.259	0.151	0.000	0.850
0.498	0.675	0.195	0.129	0.001	0.870
0.506	0.440	0.407	0.127	0.026	0.847
0.501	0.564	0.279	0.157	0.000	0.839

- $\boldsymbol{f}(\boldsymbol{A B})$ and $f(\boldsymbol{a b})$ individually vary widely for virtually identical r^{2} values, but their sum varies over very small range (0.834-0.897), and does not overlap that for other r^{2} values.
- $\boldsymbol{f}(\boldsymbol{A b})$ values are very low, often zero, for virtually identical r^{2} values, (and also have same values for widely different r^{2} values, data not shown),
- $\mathrm{f}(\boldsymbol{a} \boldsymbol{B})$ varies over very small range (0.103 to 0.166), and values do not overlap those for other r^{2} values.
- Each level of r^{2} values has its own characteristic $f(\boldsymbol{a B})$ and $\boldsymbol{f}(\boldsymbol{A B}+\boldsymbol{a b})$, but $\operatorname{not} f(A B)$ or $f(a b)$ taken individually.
- Thus, $f(\boldsymbol{a B})$ appears to be the main determiner of $\boldsymbol{f}(\boldsymbol{A B}+\boldsymbol{a b})$, and of r^{2}.

Figure 1. r^{2} plotted against dMAF.

Puzzle number 2

- For the 777 K array, 55% of diagonal r^{2} values ≥ 0.6.
- For $r^{2}>0.6$, we need $f(a B)<0.100$; and $f(A b)$ close to zero.
- Puzzle No. 2: How did such a high proportion of marker pairs come to have these very special proportions of $f(a B)$ and $f(A b)$?
- We unravel these puzzles in the light of the evolutionary history of a closely linked marker pair.

Unraveling the puzzles

- We start with a polymorphic site, $\boldsymbol{A}, \boldsymbol{a}$.
- Mutation of a nearby site, from \boldsymbol{B} to \boldsymbol{b}.
- This immediately generates three Haplotypes:
$\checkmark \boldsymbol{A B}, \boldsymbol{a} \boldsymbol{B}$, and $\boldsymbol{a b}$ (assuming the new mutation occurs in a chromosome strand carrying allele a).
\checkmark Frequency: $\boldsymbol{f}(\boldsymbol{A B})>f(a B) \gg f(a b)$
$\checkmark \boldsymbol{f}(\boldsymbol{A b})=0$, until crossing over between $\boldsymbol{A B}$ and $\boldsymbol{a} \boldsymbol{b}$, which must wait for $f(a b)$ to reach appreciable values.
- Drift enters the picture.
\checkmark Increase in $\boldsymbol{f}(\boldsymbol{a b})$ depends on genetic drift over evolutionary time.
\checkmark With $f(A b)=0, f(b)=f(a b)$.
\checkmark Choosing markers with minimum MAF $\rightarrow \boldsymbol{a} \boldsymbol{b}$ has not been lost from the population, and is present at some minimum frequency.
- Selection of markers enters too!
\checkmark Markers for the array are chosen to have MAF in the range 0.05 to 0.5 . Since $\boldsymbol{f}(\boldsymbol{A b})$ is either zero or very very low, this means that $\boldsymbol{f}(\boldsymbol{a b})$ is also in this range, with mean about 0.2-0.3.
\checkmark We have defined $\boldsymbol{A B}$ as the most frequent haplotype, hence frequency will be $>0.5-$ about 0.6-0.8 (Tables 1 and 2).
\checkmark Thus, between $\boldsymbol{f}(\boldsymbol{A B})$ and $\boldsymbol{f}(\boldsymbol{a b})$, there is not much left for $\boldsymbol{f}(\boldsymbol{a B})-$ hence the low values for $f(a B)$.
\checkmark And that is how we end up with 55% of diagonal LD values >0.6.
- Recombination?
\checkmark All of this holds only for very close markers, so that $\boldsymbol{f}(\boldsymbol{A b})$ remains very low.
\checkmark Once markers are separated by greater distances, $\boldsymbol{f}(\boldsymbol{A b})$ becomes appreciable, and LD descends to very low values.
Figure 2. Diagonal LD against separation distance.

Oh! Oh! Trouble?

- If high marker-marker LD is mainly due to selection for high MAF \rightarrow marker-marker LD may not be representative of marker-QTL LD!
- Not necessarily!
- To contribute to genetic variation, QTL must also be at moderate frequencies.
- Thus, marker-marker LD may also represent marker-QTL LD.

Thus, in an amazing way it all comes together to provide genomic structures preadapted for Genome selection and GWAS.

