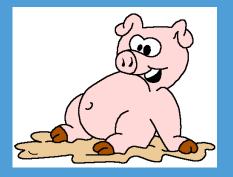
Interplay Workshop 29 August 2013 – EAAP - Nantes

Effects of early microbiota association and dietary interventions on gut development and function in piglets


A.J.M. Jansman, S.J. Koopmans, J. Zhang and H. Smidt

Introduction

- Intestinal health of pigs had large focus over the past 10 years
- Focus on weaning and gut health in the post weaning period
- Use of dietary interventions (nutrients, ingredients and feed additives)
- Low attention to the role and importance of the immediate postnatal colonisation of the gut and long term consequences for gut health and performance

Intestinal microbiota and long term health effects

- Effects on the functional development of the gut (barrier function)
- Effects on development of the immune system and development of allergies and auto immune diseases
- Effects on the development of obesity
- Influence on the predisposition for inflammatory bowel disease (IBD)
- Effects of early antibiotic treatment

Long term effects of intestinal microbiota on animal health and performance

Recent papers

REVIEWS

uenced by bacterial colonization of the

mune system are initienced by bacterial colonization on the folecular Pathways that mediate host-symbioni interaction

nune nunction. I mainty we present recent evidence to su terial microbiota result in dysregulation of adaptive inm terial microbiota result in dysregulation of adaptive inm

The gut microbiota shapes intestine incontraction of the alth

cal dysregulation is the cause

the mammalian immune system, which is in fact controlled by microorganisms.

 $\lim_{N \in \mathcal{P}(M)} \lim_{M \in \mathcal{P}($

Patrice D Cani and Nathalie M Delzenne

and disease

June L. Round and Sarkis K. Mazmanian

The ISMF Journal (2008) 2, 739-748 © 2008 International Society for Microbial Ecology All rights reserved 1751-7362/08 \$30.00 www.nature.com/ismei

ORIGINAL ARTICLE The immediate environment during Developmental Origins of Obd Developmental Ungins of Ubi postnatal development has long-term impact on gut community structure in pigs

Claire L Thompson, Bing Wang and Andrew J Holmes Y: Early Feeding F. School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales, Australia

inal tract is the primary site of sms, both symbiotic and Modulation of Systemic Immune Responses through Commensal Gastrointestinal Microbiota

notecual pathways that mestate non-symmetric to support is function. Finally, we present recent evidence to support in the bacterial microbiota result in dysregulation of adaptive immune i underlie disorders such as inflammatory bowel disease. This raises the here memory law immune extern which seems to be Assimilated to come Underlie disorders such as inflammatory bowel disease. This raises the the mammatian immune system, which seems to be designed to contri-tion fact convention have not convenience Kyle M. Schachtschneider¹, Carl J. Yeoman^{2,3}, Richard E. Isaacson⁴, Bryan A. White^{1,2}, Lawrence B. Schook^{1,2*}, Maria Pieters²

ELSEVIER

UKIGINAL AKTICLE

hamacology

Original Research Article

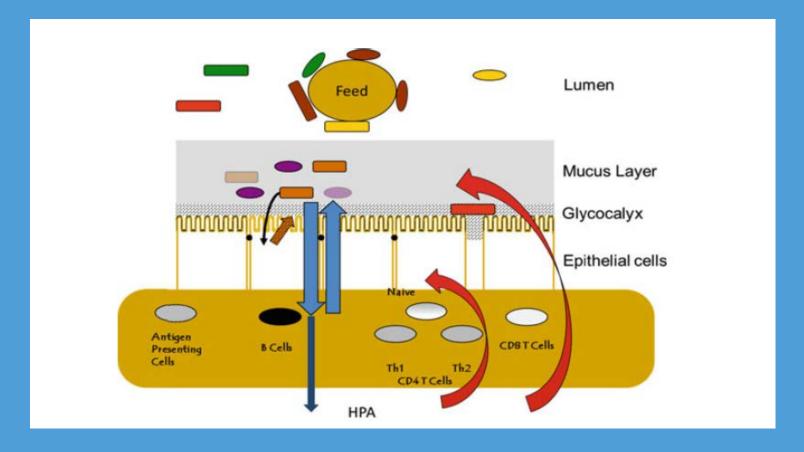
Direct experimental evidence that early-life farm environment influences regulation of immune responses

IN JOURNAL OF HUMAN BIO.

Marie C. Lewis¹*, Charlotte F. Inman¹*, Dilip Patel¹, Bettina Schmidt², Imke Mulder², Bevis Miller¹, Bhupinder P. Gill³, John Pluske⁴, Denise Kelly², Christopher R. Stokes¹ & Michael Bailey¹

Interplay between obesity and associated metabolic disorders: Infection and Immunity, School of Veterinary Science, University of Bristol, Langford, Somerset, UK; ²Gut Immunology Group, University of Aberdeen, Rowett Institute, Aberdeen, UK; ³DEFRA, London, UK; ⁴School of Veterinary and Biomedical Sciences, Murdoch University, Perth, Western Australia

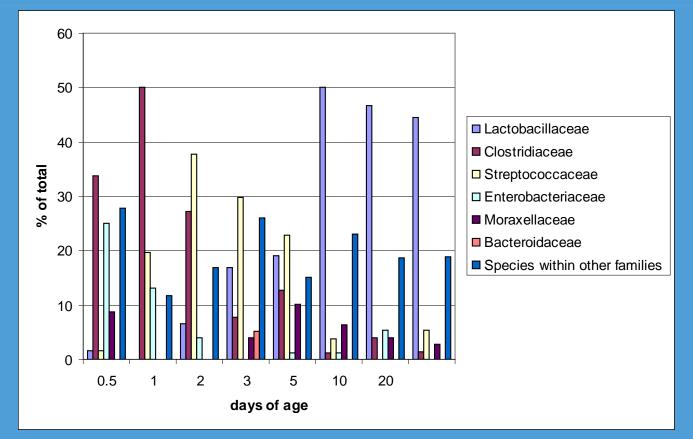
Available online at www.sciencedirect.com ScienceDirect


ogy

Programming infant gut microbiota: influence of dietary and environmental factors

Tatiana Milena Marques^{1,2,3}, Rebecca Wall¹, R Paul Ross^{1,2}, Gerald F Fitzgerald^{1,3}, C Anthony Ryan⁴ and Catherine Stanton^{1,2}

WAGENINGEN <mark>UR</mark> For quality of life

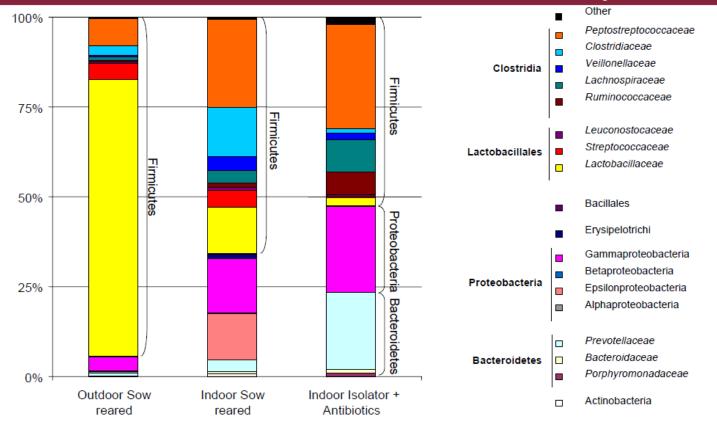

The interaction between microbiota and the host at intestinal level

Patterson, 2012

Microbial succession in the digestive tract of piglets after birth

In total 604 species identified using ¹⁶S rRNA gene sequencing

Petri et al., 2010


Outdoor, Indoor and Isolator Environments

Kelly et al., 2010

Early-life Environment Significantly Alters Microbial Mucosa-Associated Diversity

Phylogenetic Distribution of 16S rDNA Sequences

Mulder et al. 2009 BMC Biology

Mulder et al., 2009

Studies in the Interplay project

The first phase was designed to develop a model in piglets that allows the investigation of the effects of postnatal association with a simple or a complex microbiota on gut health and development.

Material & methods - CDCD piglets

- Two SPF sows delivered 30 CD-piglets (13 and 17 resp.).
- 30 piglets subdivided into two groups in two "clean" SPF rooms (15 per pen).
- All piglets were orally dosed with a fixed volume of blood serum (supply of immunoglobulins).
- At the end of the day, all piglets were hand-fed a fixed amount of serum and milk for SPF piglets.

From day 1 to 3, all piglets received an inoculum with a mixture of three bacterial species ("Bristol mix" consisting of Lactobacillus amylovorus (3.6 x 10⁷ cfu), Clostridium glycolicum (5.7 x 10⁷ cfu) and Parabacteroides sp. (4.8 x 10⁷ cfu) as a means to standardize the intestinal microflora during the first days of life.

Treatments

From day 3 onwards each piglet were subjected to one of the two experimental treatments:

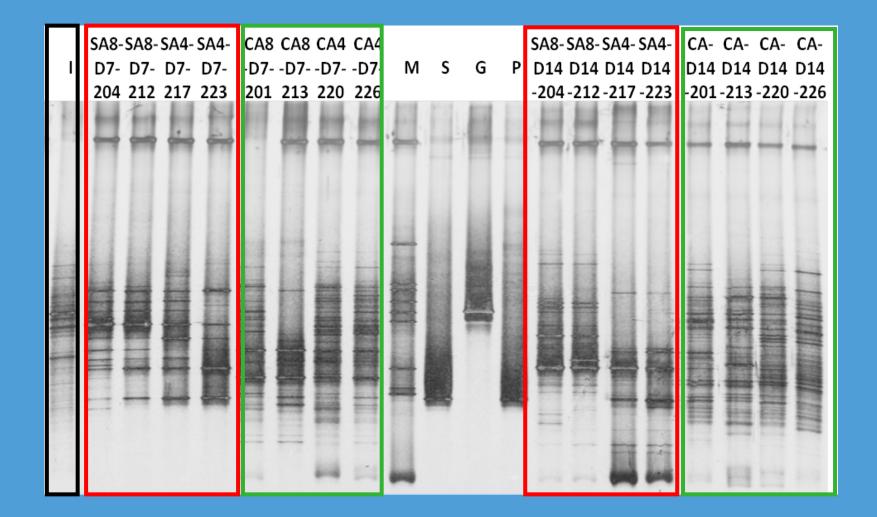
Treatment 1 (SA)(n=15), association with three microbial species (d 1-3), SPF conditions

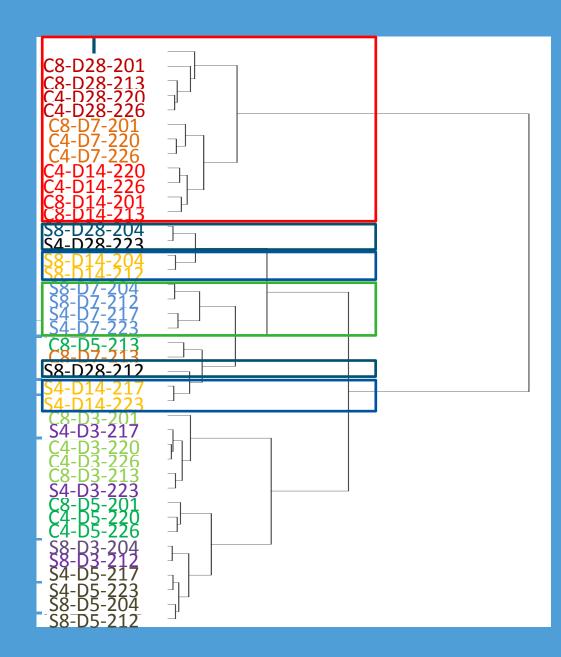
Treatment 2 (CA) (n=15), association with three microbial species (d 1-3) and orally receiving a fixed amount of diluted faeces (2 ml of an inoculant consisting of 10% saline diluted faeces) via oral gavage from a conventional sow (treatment imposed during day 3 and 4 of the study), SPF conditions.

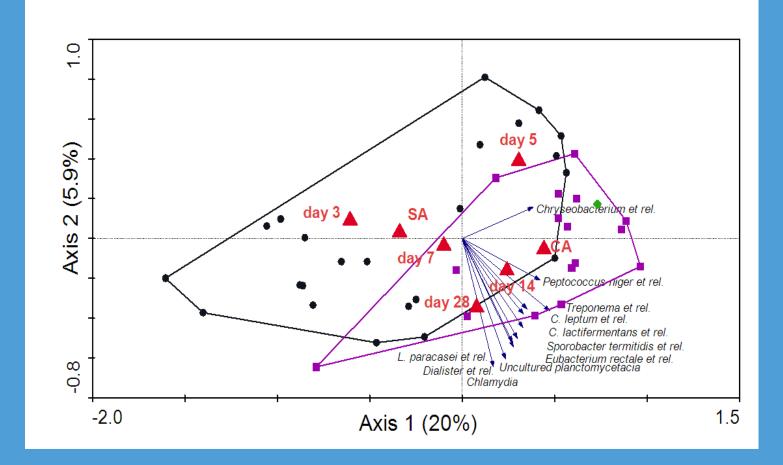
CDCD piglets

- Piglets were fed the milk based diet for a period of 3 days (day 0-3 of the study) (4 feedings per day) using a milkboot
- On day 4 after birth, the milk diet for both groups of piglets was replaced by a liquid diet for both experimental groups. The liquid feed was provided by an automated feedingsystem.
- Throughout study faeces samples were collected and on d 28, piglets of both groups were euthanized for collection of blood, digesta and various tissue samples.

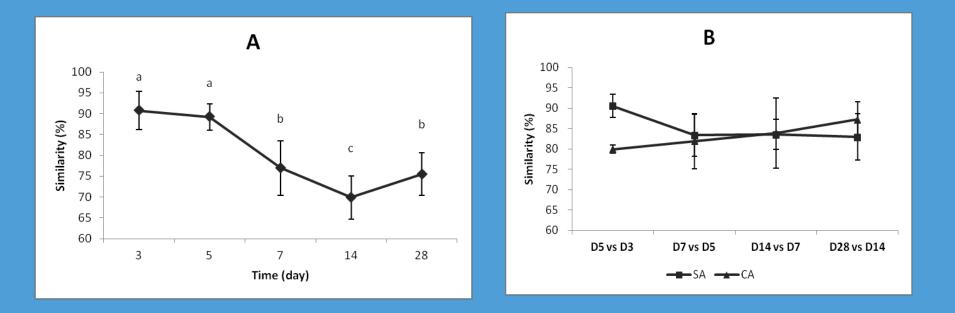
Caesarean delivery



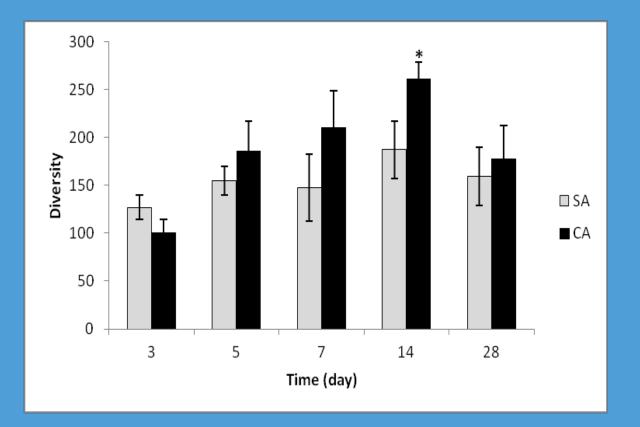

DGGE analysis d 7 and 14


PITChip results Cluster analysis

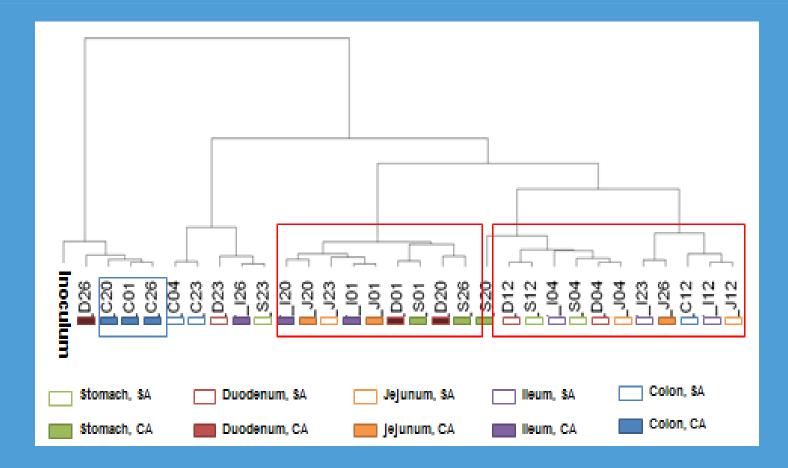
Day 28	CA Treatment
Day 14	CA Treatment
Day 7	CA Treatment
Day 5	CA Treatment
Day 3	CA Treatment
Day 28	SA Treatment
Day 14	SA Treatment
Day 7	SA Treatment
Day 5	SA Treatment
Day 3	SA Treatment


Comparison of bacterial communities among treatments

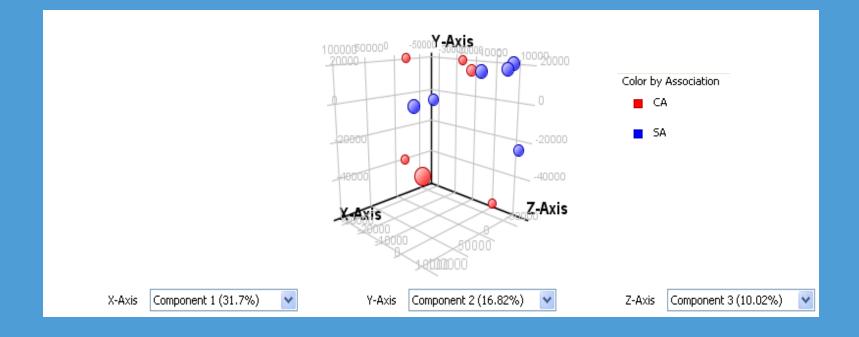
P treatment: 0.002



Similarity of bacterial communities in faecal samples as affected by treatment (B) and time of sampling (A)

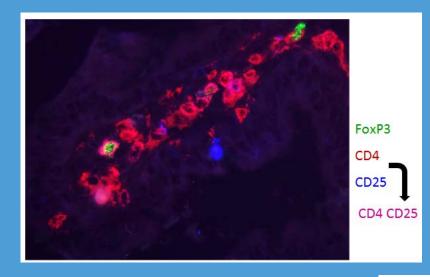

Diversity of bacterial communities in faeces among treatments

Diversity of bacterial communities in faecal samples as affected by treatment of piglets (simple association (SA) and complex association (CA)) and by time of sampling. * indicates significant difference between treatments (P<0.01).



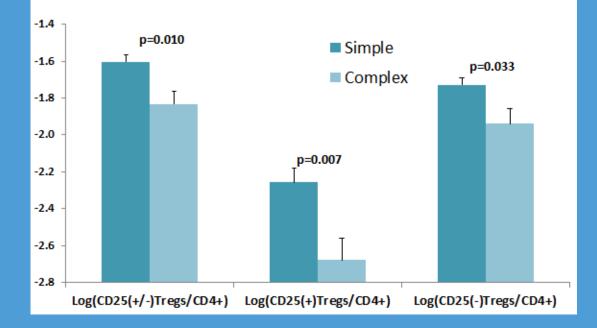
Comparison of microbiota communities in stomach, duodenum, jejunum, ileum and colon samples from d 28 using PIT chip analysis

PCA analysis gene expression ileal mucosa d 16



Gene expression analysis – ileal mucosa

Table GO> CA e	enriched compared to SA (FDR < 5%)	
<u>Top10</u>	Name	General Proces
1	ALCOHOL METABOLIC PROCESS	Metabolic
2	T CELL ACTIVATION	Immune
3	GTPASE ACTIVITY	Metabolic
4	CYTOKINE METABOLIC PROCESS	Immune/Metabolic
5	G PROTEIN SIGNALING	Metabolic
6	CYTOKINE ACTIVITY	Immune
7	LYMPHOCYTE ACTIVATION	Immune
8	CYTOKINE BIOSYNTHETIC PROCESS	Immune/Metabolic
	REGULATION OF LYMPHOCYTE	
9	ACTIVATION	Immune
10	GUANYL NUCLEOTIDE BINDING	Metabolic



T-reg cells in the distal jejunal mucosa

Christoforidou et al. 2013

Effects of a diet intervention

To compare the effects of a simple versus complex starter microbiota and to determine the effects of early preweaning nutrition (supply of a diet with or without medium chain triglycerides) on piglet development, gut immunity, microbial development in the gastro-intestinal tract and gut functionality using of CD-derived piglets

Medium chain triglycerides (MCT)

- Coconut oil and palmkernel oil
- High in C6-C12 fatty acids

- Fast intraluminal hydrolysis in gut
- Absorption via blood (fast source of energy)
- Effects on immune system (reduction cytokine response (IL-8), modifies response to LPS, increase IgA secretion)
- Influence intestinal microbiota (antimicrobial properties)

Fatty acid composition coconut oil

Fatty acid	C and = % in oil	
Capric Acid	10:0	6-7
Lauric acid	12:0	49
Myristic Acid	14:0	17,5
Palmitic Acid	16:0	9,0
Stearic Acid	18:0	3,0
Oleic Acid	18:1 (ω-9)	5,0
Linoleic Acid	18:2 (ω-6)	1,8

Treatments

The piglets received colostrum (100 ml) on the day of birth.

At day 3 and 4 each piglet were subjected to one of the two starter flora treatments.

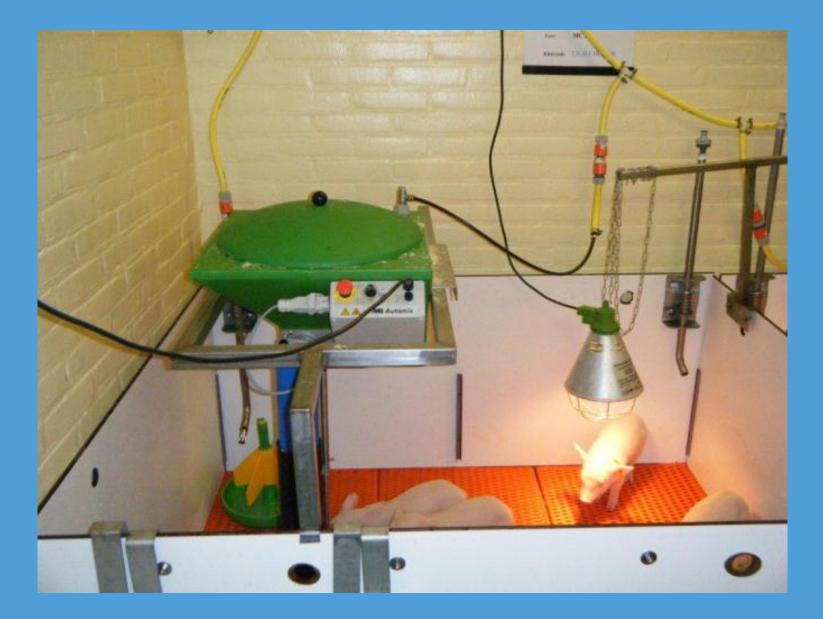
- Treatment SA (n=28, 4 pens with 7 piglets each), associated with a simple microflora on day 1, 2 and 3 and kept in a clean room under SPF conditions.
- Treatment CA (n=28, 4 pens with 7 piglets each), associated with a simple microflora on day 1, 2 and 3 and subsequently with a complex microflora on day 3 and 4 and kept in a clean room under SPF conditions.

These piglets receive a fixed amount of diluted faeces from a conventional sow from a different farm as the farm used for the sows providing the CD piglets¹.

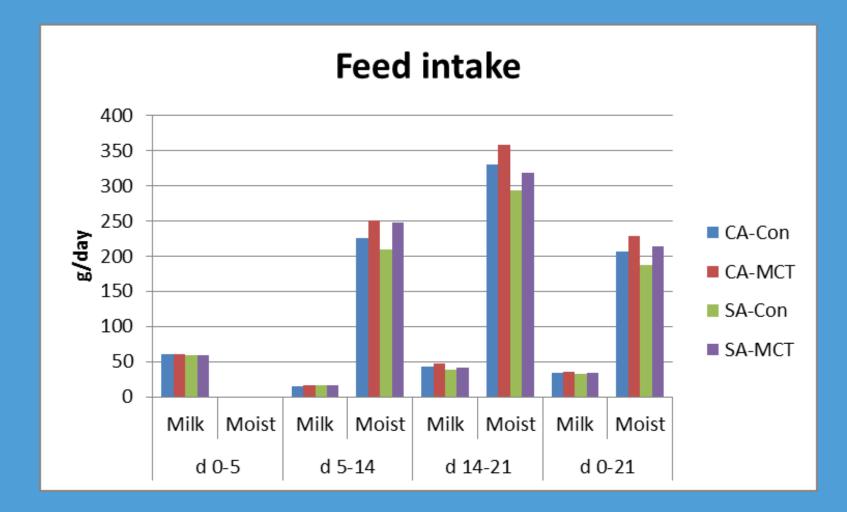
Experimental treatments

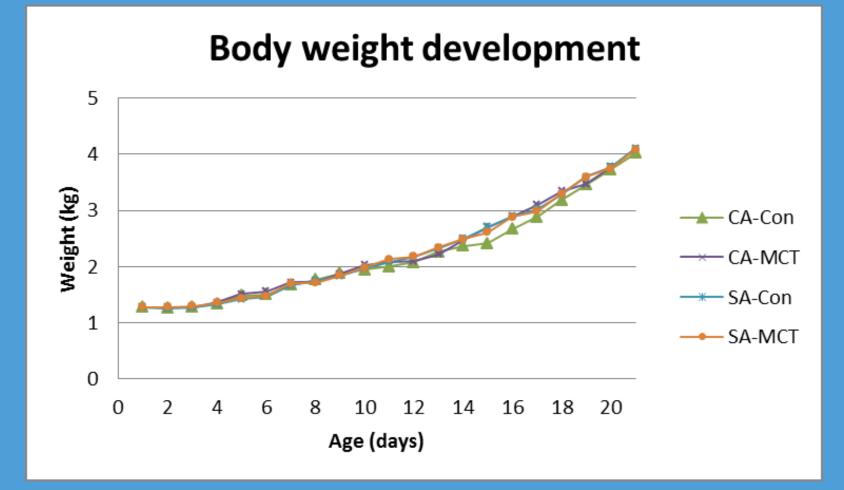
- 1. Treatment SA SO/PO (n=14, 2 pens with 7 piglets each), associated with a simple microbiota (SA) and fed a moist diet with soya oil (SO) and palm oil (PO)
- Treatment SA CO (n=14, 2 pens with 7 piglets each), associated with a simple microbiota (SA) and fed a moist diet with coconut oil (CO)
- Treatment CA SO/PO (n=14, 2 pens with 7 piglets each), associated with a simple microbiota and subsequently with a complex microbiota (CA) and fed a moist diet with soya oil (SO) and palm oil (PO)
- Treatment CA CO (n=14, 2 pens with 7 piglets each), associated with a simple microbiota and subsequently with a complex microbiota (CA) and fed a moist diet with coconut oil (CO)

Diet composition (g/kg)

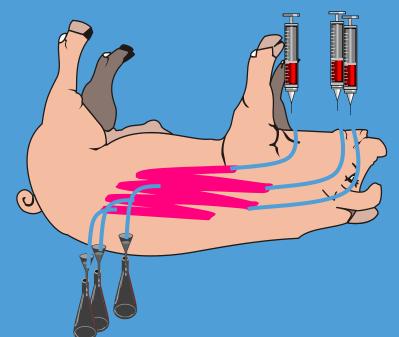

	Control	MCT
Maize	200.0	200.0
Whey Powder	180.0	180.0
Wheat	150.0	150.0
Oats Flocs	80.0	80.0
Barley	70.0	70.0
Wheat gluten meal	50.0	50.0
Full fat soybeans	40.0	40.0
Soycomill-P	33.0	33.0
Lactose	30.0	30.0
Potato protein	30.0	30.0
Monocalciumphosphate	0.6	0.6
Rice Meal	12.0	12.0
Limestone	0.9	0.9
Salt	3.6	3.6
Dicalciumphosphate	19.4	19.4
Premix	5.0	5.0
Soya oil	50.6	3.8
Palm oil	30.0	6.8
Coconut oil		70.0

	Control	MCT
DM	914	914
Ash	54	54
СР	195	195
EE	115	115
Crude fibre	20	20
Starch	245	245
Sugars	141	141
Са	7.0	7.0
Dig. P	4.8	4.8
К	3.5	3.5
Na	3.5	3.5
CI	3.9	3.9
dEB (meq/kg)	175	175
NEpigs (MJ/kg)	12.20	12.20



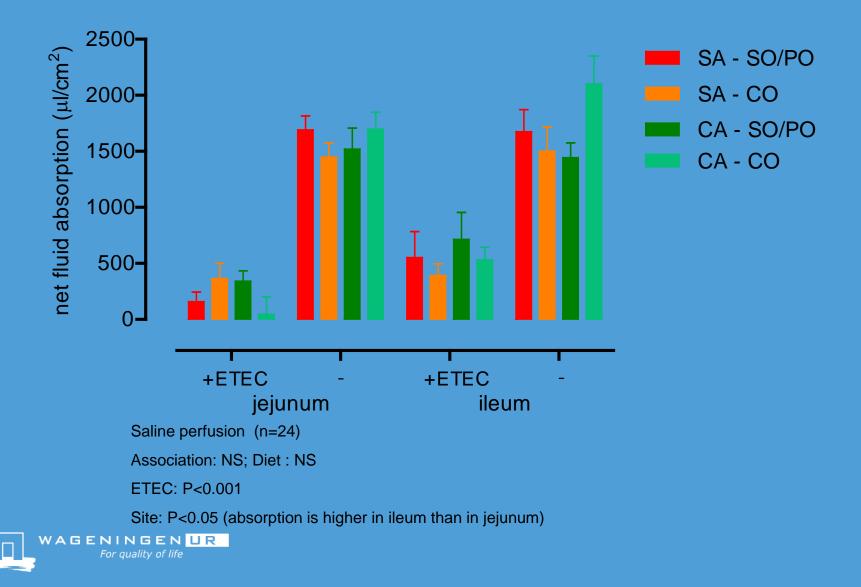


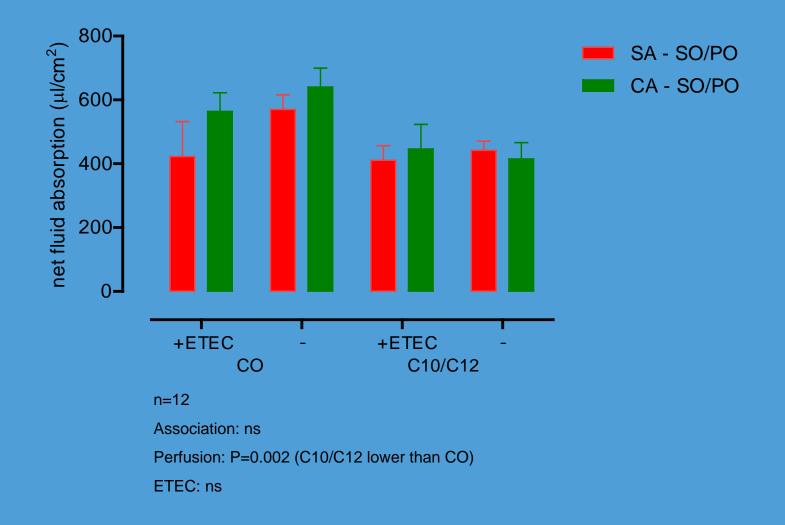
Effects of treatments of feed intake


Development of body weight

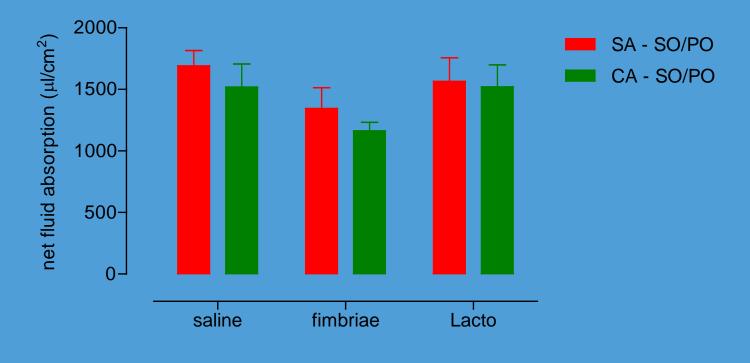
In situ: Small Intestinal Segment Perfusion (SISP) system

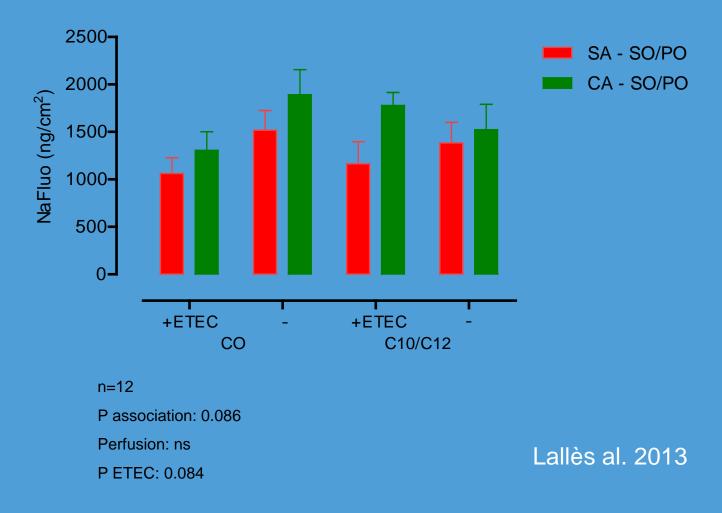
- Pigs under anaesthesia
- 10 segments in small intestine (± 20 cm long)
- cranial inflow tube (\emptyset 3 mm), caudal outflow tube (\emptyset 5 mm)
- Perfusion 2 ml per 15 min
- ETEC challenge 5 ml, 1.1 x 10⁹ cfu/ml





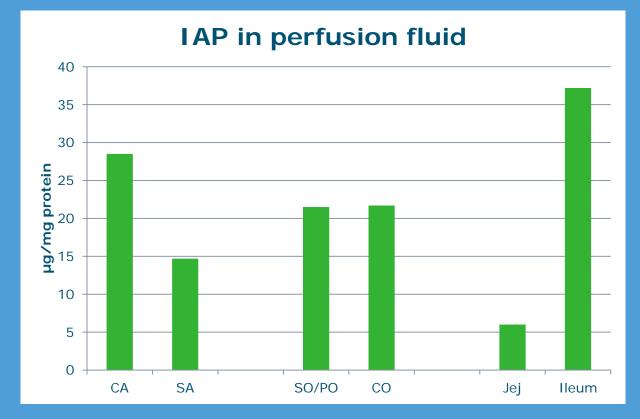
Treatments evaluated


Treatment	Conditions	n	Challenge	Location
Saline	-	24	-/+ ETEC	Jejunum
Saline	-	24	-/+ ETEC	lleum
Coconut oil	+ lipase	24	-/+ ETEC	Jejunum
C10/C12	+ lipase	12	-/+ ETEC	Jejunum
GRL1110 (L. amylovorus)	5 ml Lacto, 1.4 x 10 ⁹ cfu/ml, saline after 1 h ETEC	6	-/+ ETEC	Jejunum
GRL1112 (Lactobacillus)	5 ml Lacto, 1.7 x 10 ⁹ cfu/ml, saline after 1 h ETEC	6	-/+ ETEC	Jejunum
GRL1110 (L. amylovorus)	5 ml 1.6 x 10 ⁸ per ml, saline	12	- ETEC	Jejunum
E. coli fimbriae	5 ml 0.05 mg/ml, perfused 0.004 mg/ml in saline	12	- ETEC	Jejunum


n=12

Association: ns

Treatment: P=0.010 (fimbria < Lacto & Saline)



Permeability as affected by treatment

Intestinal alkaline phosphatase

Association: P = 0.02

Diet: NS

Site: P<0 001

Association x Site: P = 0.04

Lallès al. 2013

Conclusions

Microbiota composition in the digestive tract of piglets in later life is influenced in complexity and composition by the early life environment.

The microbiota composition in the GI tract of pigs has functional consequences on the various functions of the gut (nutrient absorption, barrier function, important component of the immune system) and can have long term effects on health and performance of the pig throughout life.

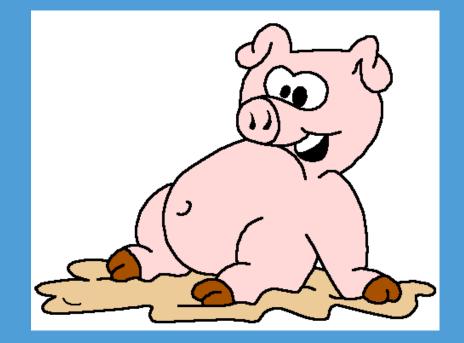
More knowledge needs to be acquired on appropriate ways to actively intervene with the gut microbiota composition at young age.

Acknowledgements

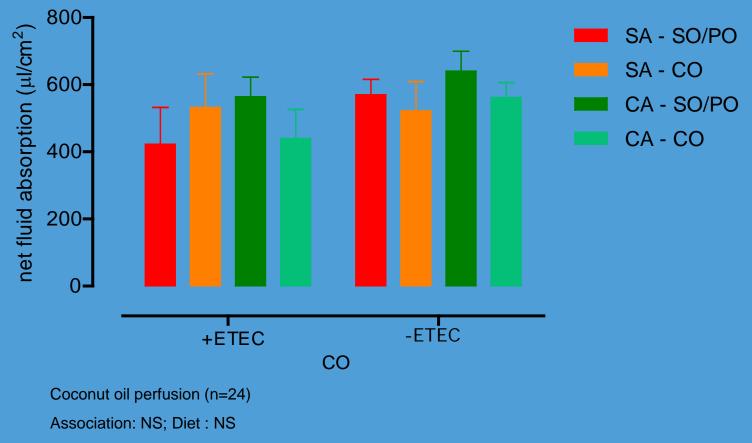
EU - INTERPLAY

Interplay of microbiota and gut function in the developing pig – Innovative avenues towards sustainable animal production

Dutch Commodity Board Animal Feed (PDV)



University of Bristol (UK)



Thank you for your attention!

ETEC: 0.051 (CO reduces the effect of ETEC; CO absorption is low)

WAGENINGEN UR For quality of life