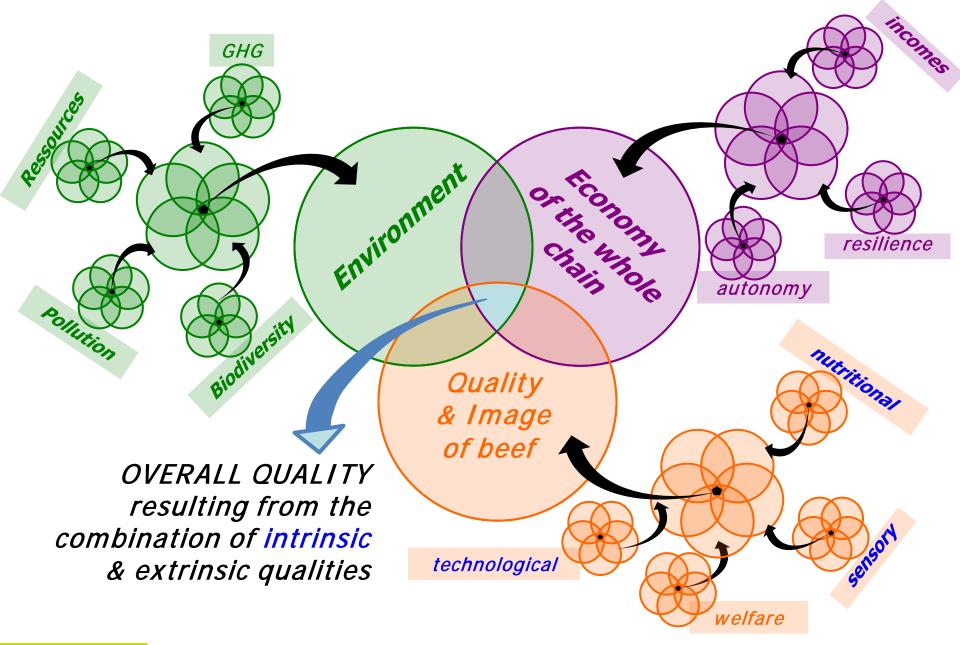

Need to conciliate beef quality, farm efficiency, environment preservation and animal welfare

R. Botreau, M. Doreau, V. Monteils, D. Durand, M. Benoit, M. Eugène, M. Lherm, S. Prache, <u>J-F. Hocquette</u>, C. Terlouw

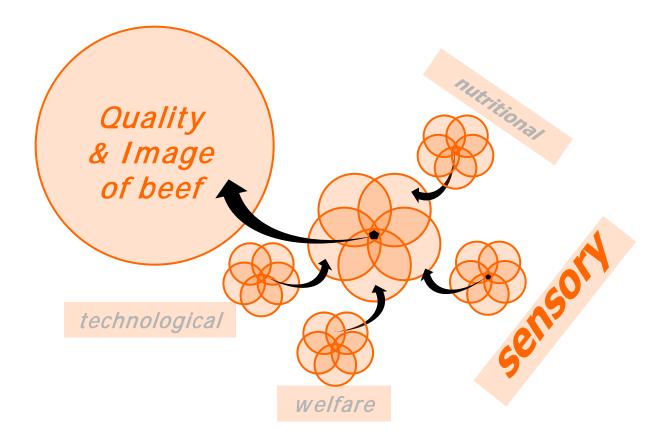
INRA, VetAgro Sup, Unité Mixte de Recherches sur les Herbivores Centre de Clermont-Ferrand/Theix

The definition of quality



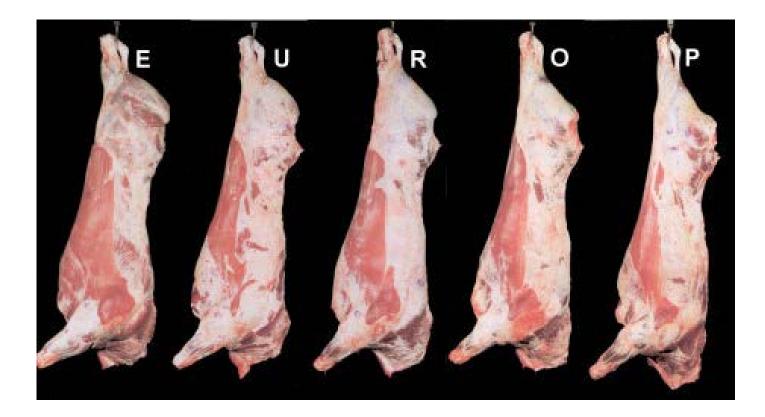
Intrinsic quality refers to the characteristics of the product itself and includes sensory traits (e.g. tenderness, flavor, juiciness, overall liking), safety, healthiness, convenience, etc.

Extrinsic quality refers to traits which are associated with the product, namely (i) production system characteristics (from the animal to the processing stages including for example animal welfare, carbon footprint), and (ii) marketing variables (including price, brand name, distribution, origin, packaging, labelling, and traceability)


reviewed by Luning, Marcelis & Jongen, 2002; Grunert, Bredahl, & Brunso, 2004.

A global approach

Husbandry, slaughtering, ageing and cooking: combining criteria for a better prediction of sensory quality



Different beef grading schemes

	E uropo	C Africo	Canada	lanan	C Karaa		Australia	
Country	Europe	S. Africa		Japan	S. Korea		Australia	
Scheme	EUROP	S. Africa	Canada	JMGA	Korea	USDA	MSA	
Grading unit	İ		Carca	ass			Cut	
Pre slaughter factors						,	HGP implants & Bos Indicus	
Slaughterfloor		Carcass weight and sex						
	Conformation	Dentition	Conformation				Electrical stimulation	
	Fat cover	Ribfat		L		1	Hang	
Chiller					Marbling sc	;ore		
	1				Meat Color	ur		
	1		Fat col	our and fat thic	ckness	Ossi	ification score	
				Eye muscle area			Fat thickness	
			Texture	Meat Brightness	Texture	Meat texture	Hump weight	
	1			Fat luster	Firmness	Ribfat	Ultimate pH	
				Fat texture	Lean maturity	Kidney fat		
	1			Fat firmness		Perirenal fat		
	1			Rib thickness		'		
Post chiller						,	Ageing time	
	1			<u> </u>			Cooking method	

The EUROP system for carcass conformation

However, consumers do not eat carcasses!

The Meat Standards Australia (MSA) system

MSA moved from a carcass pathways to a cuts based grading scheme

Meat Quality score (MQ4) (0-100 scale) = 0.3 tenderness + 0.1 Juiciness + 0.3 Flavor liking + 0.3 Overall liking

7

Meat Standards Australia (MSA)

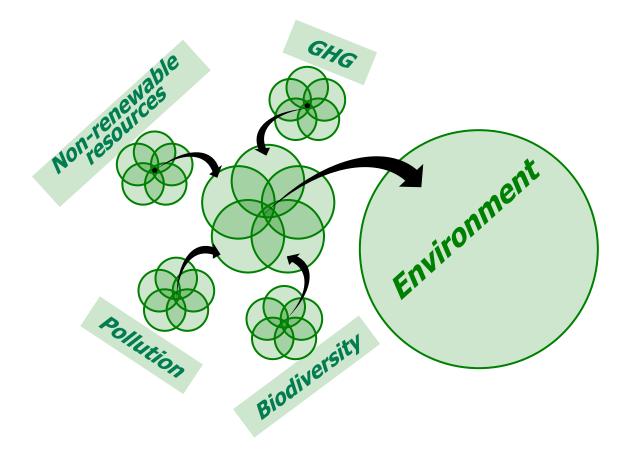
MSA2000model®					
Hang (AT/TC/TS/TX)	AT				
Sex (M, F)	m				
Est.% Bos Indicus	0				
Hump Height cms	0				
Hot Std Carc Weight	250				
USDA Ossification	140				
Milk Fed Vealer Y/N	n				
USDA Marbling	130				
Days Aged (min 5)	5				
Quarter Point Ribfat	12				
Ultimate pH	5.50				

AUSMEAT Meat C	ol.
Saleyard? (Y,	N)

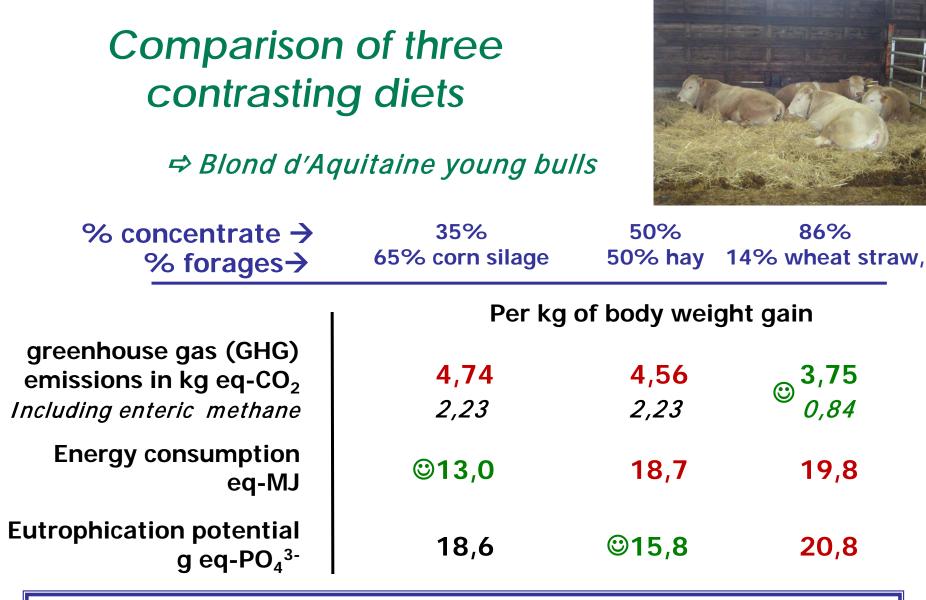
2

AUSMEAT	Mea	at C	ol.
Saleya	rd?	(Y,	N)

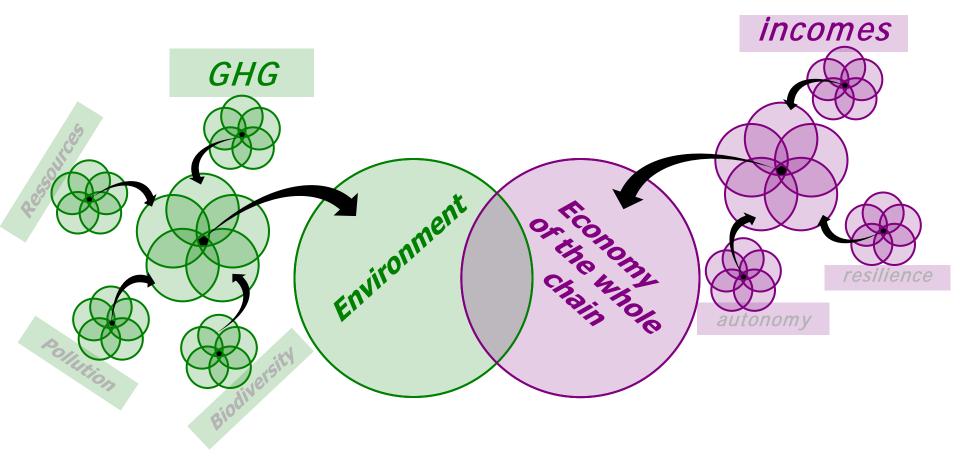
Wght/App.Maturity



n

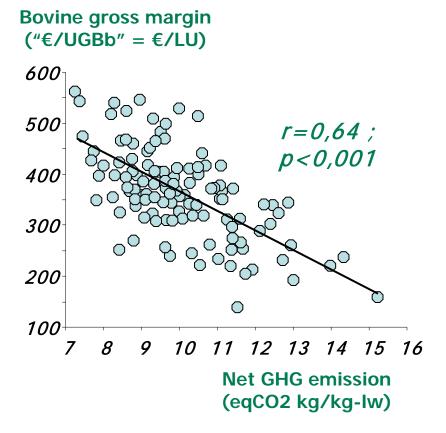

					· ·		-	
	Muscle	Days	Grilled	Roast	Stir	Thin	Cass-	Corne
Cut Description	Reference	Aged	Steak	Beef	Fry	Slice	erole	d Beef
Tenderloin	TDR062		5	4	5			
Cube Roll	CUB045		3	3	3	-		
Striploin	STR045		3	3			- b : I	
Oyster Blade	OYS036		4	3	P	alat		•
Bolar Blade	BLD096		3	3	grade			
Chuck Tender	CTR085			3	3			
Rump	RMP131		3	3	3	3		
Point End Rump	RMP231		3	3	3	4		
Knuckle	KNU099		×	3	3	3	3	
Outside Flat	OUT005			x	x	3	3	3
Eye Round	EYE075		x	3	3	3	3	x
Topside	TOP073		x	x	x	3	3	
Chuck	CHK078			3	3	3	3	
Thin Flank	TFL051				3		3	
Rib Blade	RIB041				3			
Brisket	BRI056				x	3	3	x
Shin	FQshin						3	

Feeding practices: comparison of three contrasting bull-fattening systems used in France


Each diet has different advantages and disadvantages

VetAgro Sup

Doreau et al, 2011; Nguyen et al, 2012


Husbandry practices : win-win relationships between environmental and economic issues

Feeding practices and beef quality

⇒ 59 farms in the Charolais area from 2010 to 2011.

High variability :

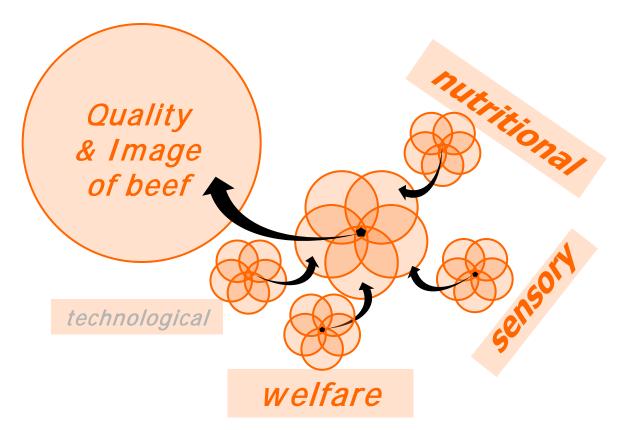
from 7 to 15 for GHG emissions

VetAaro Sup

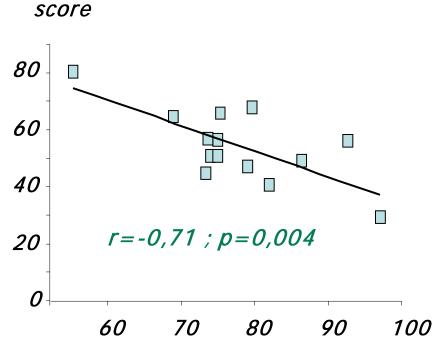
from 150 to 550 for gross margin

Win-win relationships:

Farms


- the most efficient on an economic basis

 are also the most efficient for low GHG emissions


Veysset et al., 2013

Husbandry and slaughtering: win-win strategies to optimise both welfare, nutritional value and tenderness

Stress at slaughter and beef quality

Heart rate at departure from the farm (bpm)

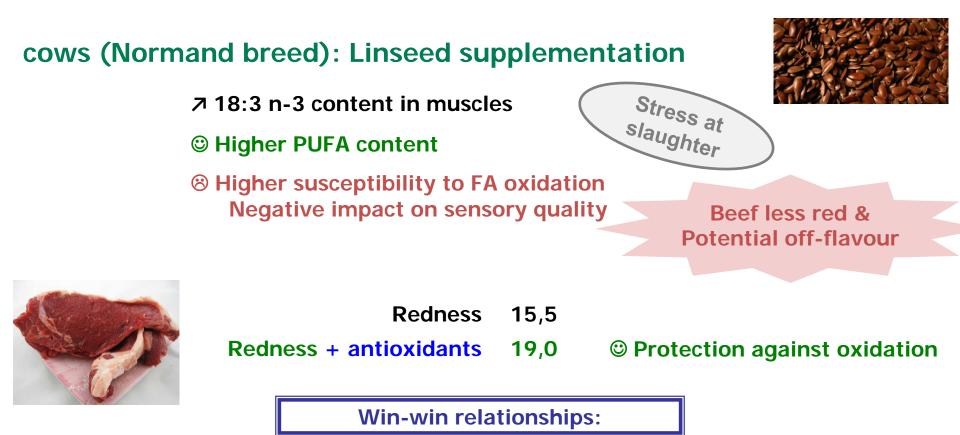
⇒ 14 cows (Normand breed)

Win-win relationship:

Cows

- with the lowest stress

low heart rate before slaughtering


- provide the most tender beef

Terlouw et al., 2012

Tenderness

Feeding practices and beef quality

Simultaneous addition of linseed and antioxidants produce beef of better quality :

- → better stability of PUFA
- → better stability of colour

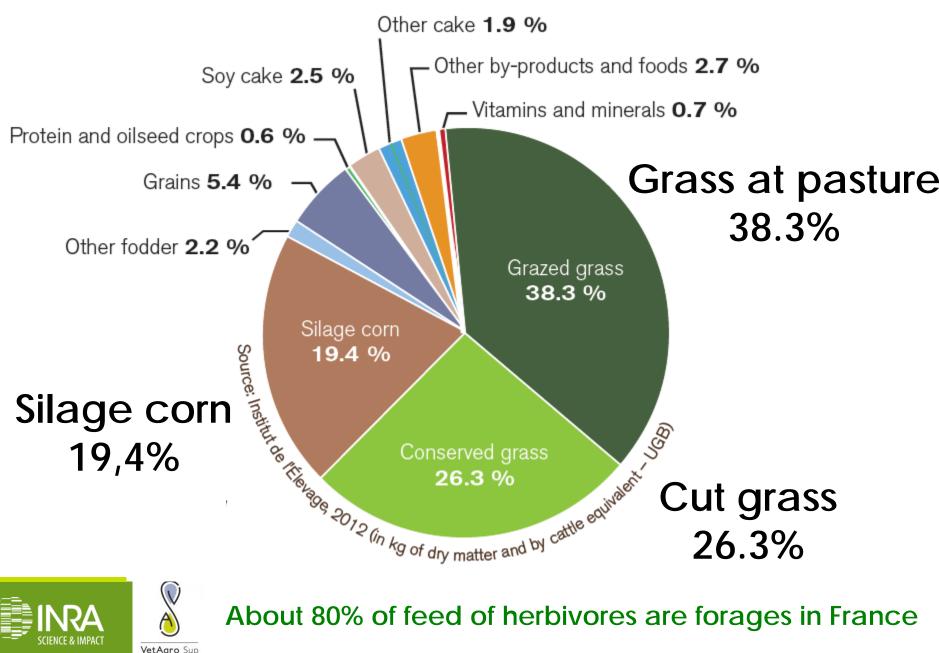
Gobert et al., 2008 ; Parafita et al., 2008 ; Bauchart et al, 2009

How to combine different criteria of quality?

- **1. Analysis by an expert:** done by traditional butchers. Not transparent, not exhaustive and also not consistent across experts.
- 2. Minimum requirements (= thresholds) easy to understand and implement but rough evaluation (good *vs* bad).
- **3.** A ranking system from best (rank 1) to worst (rank n), and a summation of the ranks: this is only a 'relative' judgment, comparing alternatives among themselves, and not an 'absolute' assessment.

4. Conversion of quality traits into value-scores

(e.g. quantitative information on a common scale) which are then compounded (e.g. the MSA system for sensory analysis based on a weighted sum).



Conclusions about multicriteria approaches

- Consumer satisfaction when eating beef involves a complex response based on objective and emotional assessments of the product.
- ✓ Scientific research must provide methods to predict, in a reliable manner, intrinsic and extrinsic quality traits of beef.
- ✓ Combining intrinsic and extrinsic quality traits by relevant and new methods is a key driver for the future.

Example of pasture-based systems

Beautiful landscape

Happy cows

PUFA-rich meat

Biodiversity

Natural feeding

Carbon sequestration

Photo credit ©: JF Hocquette